Cover image for Recent Developments in Theoretical Physics.
Recent Developments in Theoretical Physics.
Title:
Recent Developments in Theoretical Physics.
Author:
Ghosh, Subir.
ISBN:
9789814287333
Personal Author:
Physical Description:
1 online resource (438 pages)
Series:
Statistical Science and Interdisciplinary Research ; v.9

Statistical Science and Interdisciplinary Research
Contents:
Contents -- Foreword -- Preface -- 1. Is the End of Theoretical Physics Really in Sight? A. Khare -- Contents -- 1.1. Research vs Teaching instead of Research and Teaching in India -- 1.2. Is End of Theoretical Physics in Sight? -- 1.3. Remarkable Developments in Physics from 1900 to 1979 -- 1.4. Developments From 1980 to 2007 -- 1.4.1. Revolution in Information Technology -- 1.5. Was Hawking Right In His Assertion? -- 1.6. Conclusions -- References -- Relativity, Gravitation and Astro-Particle Physics -- 2. Holography, CFT and Black Hole Entropy P. Majumdar -- Contents -- 2.1. Introduction -- 2.2. Holographic Hypothesis -- 2.3. Weakly Isolated Horizons -- 2.4. Loop Quantum Gravity : Spin Network Basis in brief -- 2.5. Quantum Isolated Horizon -- 2.5.1. Counting of CS states -- 2.6. Low-tech way : It from Bit -- 2.7. Radiant Black Holes -- 2.7.1. Saddle Point Approximation -- 2.7.2. Schwarzschild Black Hole -- 2.7.3. AdS Schwarzschild Black Hole -- 2.8. Questions Yet to be Resolved -- References -- 3. Hawking Radiation, E ective Actions and Anomalies R. Banerjee -- Contents -- 3.1. Introduction -- 3.2. General Discussion on Covariant and Consistent Anomalies -- 3.3. Covariant Gauge Anomaly and Charge Flux -- 3.4. Consistent Gauge Anomaly and Charge Flux -- 3.5. Covariant Gravitational Anomaly and Energy-Momentum Flux -- 3.6. Effective Actions and Unruh Vacuum -- 3.6.1. Charge and Energy Flux -- 3.6.2. Connection with Unruh vacuum -- 3.7. Higher Spin Anomaly and Hawking Flux -- 3.8. Discussions -- Acknowledgment -- References -- 4. Probing Dark Matter in Primordial Black Holes A. S. Majumdar -- Contents -- 4.1. Introduction -- 4.2. Primordial Black Holes in Standard Cosmology -- 4.3. Black Holes in Alternate Gravity Theories -- 4.4. Braneworld Cosmology with Black Holes -- 4.5. Observational Constraints and Binary Formation.

4.6. Observables of Strong Gravitational Lensing -- 4.7. Conclusions -- References -- 5. Physics in the `Once Given' Universe C. S. Unnikrishnan -- Contents -- 5.1. Introduction -- 5.2. Cosmic Relativity -- 5.2.1. The gravitational potentials of the universe -- 5.2.2. Cosmic potentials and the gravitational metric -- 5.2.3. Rates of clocks and clock comparison experiments -- 5.3. The Laws of Motion, Equivalence Principle and the Pseudo-Forces -- 5.4. Quantum Mechanics and the Cosmic Gravitational Potentials -- 5.4.1. Spectral fine structure and matter-wave interferometry -- 5.4.2. The Spin-Statistics Connection -- 5.5. The One-Way Speed of Light -- 5.6. General Relativity and Cosmic Relativity -- 5.7. Conclusions -- References -- High Energy Physics, Nuclear Physics and Quantum Mechanics -- 6. Doubly-Special Relativity G. Amelino-Camelia -- Contents -- 6.1. Introduction -- 6.2. Relativity, Doubly Special -- 6.2.1. Motivation -- 6.2.2. Defining the concept -- 6.2.3. A falsifiable proposal -- 6.3. More on the Concept (a true-false exercise) -- 6.3.1. DSR not equivalent to Special Relativity -- 6.3.2. Not necessarily involving the k-Poincare Hopf algebra -- 6.3.3. Not any deformation, but a certain class of deformations of Special Relativity -- 6.3.4. A physics picture leading to DSR and the possibility of DSR approximate symmetries -- 6.3.5. Not any fundamental length scale -- 6.3.6. And the same type of scale may or may not be DSR compatible -- 6.3.7. Classical spacetime not a possibility when photon speed is wavelength dependent -- 6.4. More on the Use of Hopf Algebras in DSR Research -- 6.4.1. A Hopf-algebra scenario with k-Poincare structure -- 6.4.2. A Hopf-algebra scenario without k-Poincare and without modied dispersion relations -- 6.5. DSR Scenarios and DSR Phenomenology.

6.5.1. A toy-model DSR-scenario test theory, confined to leading order -- 6.5.2. On the test theory viewed from an (unnecessary) allorder perspective -- 6.5.3. Photon stability -- 6.5.4. Weak threshold anomalies for particle reactions -- 6.5.5. Wavelength dependence of the speed of light -- 6.5.6. Crab-nebula synchrotron radiation data not significant -- 6.6. Some Other Results and Valuable Observations -- 6.6.1. A 2+1D DSR theory? -- 6.6.2. A path for DSR in Loop Quantum Gravity? -- 6.6.3. Maximum momentum, maximum energy, minimum wavelength -- 6.6.4. Deformed Klein-Gordon/Dirac equations -- 6.6.5. The "soccerball noproblem" -- 6.6.6. Curvature in energy-momentum space -- 6.6.7. A gravity rainbow? -- 6.7. Some Recent Proposals -- 6.7.1. A phase-space-algebra approach -- 6.7.2. Finsler geometry -- 6.7.3. A 5D perspective -- 6.7.4. Everything rainbow -- 6.8. Closing Remarks -- References -- 7. Nuances of Neutrinos A. Raychaudhuri -- Contents -- 7.1. Introduction -- 7.2. Neutrino Oscillations -- 7.2.1. Two flavors -- 7.2.2. Matter effects -- 7.2.3. Three flavors -- 7.2.4. Open issues -- 7.3. INO -- 7.3.1. ICAL: genesis and plans -- 7.3.2. The ICAL detector -- 7.3.2.1. Detector Structure -- 7.3.2.2. Active Detector Elements -- 7.3.2.3. Present Status -- 7.3.3. Up/Down asymmetry in atmospheric neutrinos -- 7.3.4. Simulation, prototype, ... -- 7.3.5. Future: Long baseline -- 7.4. Conclusions -- Acknowledgements -- References -- 8. Dynamics of Proton Spin A. N. Mitra -- Contents -- 8.1. Introduction -- 8.1.1. Theoretical Ingredients -- 8.1.2. Plan of the Paper -- 8.2. Structure of the Full BS Wave Function Ψ -- 8.2.1. Instant vs LF Representations of Momenta -- 8.2.2. From Ψ to Φ via Gordon Reduction -- 8.2.3. 3D-4D Interlinkage by Green's Function Method -- 8.3. Proton Spin Formalism -- 8.3.1. BS Normalization of qqq Wave Function.

8.3.2. Spin Matrix Elements in Lowest Order -- 8.4. Spin Correction from Two-gluon Anomaly -- 8.4.1. Two-gluon Anomaly Operator -- 8.4.2. 2-gluon anomaly correction to spin amplitude -- 8.4.3. 'Kinematical' Part of the Spin Correction -- 8.5. Summary and Conclusion -- References -- 9. Whither Nuclear Physics? A. Abbas -- References -- 10. Generalized Swanson Model and its Pseudo Supersymmetric Partners A. Sinha and P. Roy -- Contents -- 10.1. Introduction -- 10.2. Theory -- 10.3. Similarity Transformation between H and h -- 10.4. Pseudo Hermitian Isospectral Partner H of H -- 10.4.1. Pseudo Hermiticity of H + -- 10.5. Underlying Symmetry between the Partners H +- -- 10.6. A Model based on Trigonometric Rosen-Morse I Potential -- Choice of parameters -- 10.7. Conclusions -- Acknowledgment -- References -- Condensed Matter Phenomena -- 11. The Relevance of Berry Phase in Quantum Physics P. Bandyopadhyay -- Contents -- 11.1. Introduction -- 11.2. Berry Phase and Chiral Anomaly -- 11.3. Berry Phase and Quantum Hall Effect -- 11.4. Quantum Entanglement and Berry Phase -- 11.5. Concurrence and Berry Phase -- 11.6. Concurrence in Various Spin System -- 1. Transverse Ising system -- 2. Heisenberg Antiferromagnetic Chain -- 11.7. Entanglement of Two Delocalized Fermions -- 11.8. Hubbard Model -- 11.9. Conclusion -- References -- 12. Quantum Hamiltonian Diagonalization P. Gosselin, A. B erard and H. Mohrbach -- Contents -- 12.1. Introduction -- 12.2. Recursive Diagonalization of Quantum Hamiltonian -- 12.3. The Semiclassical Approximation -- 12.3.1. The semiclassical energy -- 12.3.2. The equations of motion -- 12.4. Physical Applications -- 12.4.1. Electron in a magnetic bloch band -- 12.4.2. Photon in a static gravitational field -- 12.5. Conclusion -- Acknowledgment -- References -- 13. The Hall Conductivity of Spinning Anyons B. Basu -- Contents.

13.1. Introduction -- 13.2. Introductory Concepts -- 13.2.1. Spin Hall effect -- 13.2.2. Berry phase -- 13.2.3. Anyons -- 13.3. Berry Phase of Anyons -- 13.3.1. Motivation -- 13.3.2. Framework -- 13.3.3. Mathematical formulation -- 13.4. Berry Curvatures and Equations of Motion -- 13.5. Physical Significance -- 13.5.1. Hall conductivity -- 13.5.2. Spin Hall conductivity -- 13.6. Conclusion -- Acknowledgement -- References -- 14. Quantum Annealing and Computation A. Das and B. K. Chakrabarti -- Contents -- 14.1. Introduction -- 14.2. Classical Spin Glasses -- 14.2.1. Spin glass ordering and Ergodicity breaking -- 14.2.2. Replica Theory and RSB in the spin glass models -- 14.3. Optimizations, Thermal Annealing and Spin Glasses -- 14.3.1. Combinatorial Optimization Problems -- 14.3.2. Simulated Thermal Annealing -- 14.3.3. Statistical Mechanics of Optimization Problems and Thermal Heuristics -- 14.3.4. Traveling Salesman Problem -- 14.4. Quantum Spin Glasses -- 14.4.1. Phase Diagram -- 14.4.1.1. Mean Field Estimate -- 14.4.1.2. Monte Carlo Studies -- 14.4.1.3. Experimental Studies of Phase Diagram -- 14.4.2. Replica Symmetry in Quantum Spin Glasses -- 14.5. Optimization Using Quantum Annealing -- 14.5.1. Quantum Monte Carlo Annealing -- (i) 2D EA Spin Glass -- (ii) Random TSP -- (iii) Random Field Ising Model: How Choice of Kinetic Term Improves Annealing Results -- 14.5.2. Quantum Annealing Using Real-time Adiabatic Evolution -- 14.5.3. Quantum Adiabatic Search for a Hole in a Golf- Course -- 14.5.4. Experimental Realization of Quantum Annealing -- 14.6. Non-stationary Quantum Annealing of a Kinetically Constrained System -- 14.7. Quantum Quenching -- 14.8. Convergence of Quantum Annealing Algorithms -- 14.9. Summary and Discussions -- Acknowledgments -- References -- Appendix -- A.1. Suzuki-Trotter Formalism.

A.2. Quantum quenching of a long range TIM.
Abstract:
This volume covers recent developments in the major areas of theoretical physics. The scope of the book ranges from small length scale (High Energy Physics, Neutrinos …) through medium scale (Nuclear Physics) to large length scale (Condensed Matter Physics) up to classical and quantum Black Hole Physics. It also deals with topics in nonlinear physics, econophysics, new ideas in quantum mechanics, quantum information and quantum computation. Sample Chapter(s). Foreword (79 KB). Chapter 1: Is the End of Theoretical Physics Really in Sight? (216 KB). Contents: Relativity, Gravitation and Astro-Particle Physics; High Energy Physics, Nuclear Physics and Quantum Mechanics; Condensed Matter Phenomena; Nonlinear Dynamics; Quantum Information. Readership: Graduate students and researchers in physics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: