Cover image for Heat Pipes : Theory, Design and Applications.
Heat Pipes : Theory, Design and Applications.
Title:
Heat Pipes : Theory, Design and Applications.
Author:
Reay, David.
ISBN:
9780080982793
Personal Author:
Edition:
6th ed.
Physical Description:
1 online resource (280 pages)
Contents:
Front Cover -- Heat Pipes: Theory, Design and Applications -- Copyright Page -- Dedication -- Contents -- Preface to sixth edition -- Preface to first edition -- Acknowledgements -- Nomenclature -- Introduction -- I.1 The Heat Pipe - Construction, Performance and Properties -- I.2 The Development of the Heat Pipe -- I.3 The Contents of This Book -- References -- 1 Historical development -- 1.1 The Perkins Tube -- 1.2 Patents -- 1.3 The Baker's Oven -- 1.4 The Heat Pipe -- 1.5 Can Heat Pipes Address Our Future Thermal Challenges? -- 1.6 Electrokinetics -- 1.7 Fluids and Materials -- 1.8 The Future? -- References -- 2 Heat transfer and fluid flow theory -- 2.1 Introduction -- 2.2 Operation of heat pipes -- 2.2.1 Wicked heat pipes -- 2.2.2 Thermosyphons -- 2.2.3 Loop heat pipes and capillary pumped loops -- 2.3 Theoretical background -- 2.3.1 Gravitational head -- 2.3.2 Surface tension and capillarity -- 2.3.2.1 Introduction -- 2.3.2.2 Pressure difference across a curved surface -- 2.3.2.3 Change in vapour pressure at a curved liquid surface -- 2.3.2.4 Measurement of surface tension -- 2.3.2.5 Temperature dependence of surface tension -- 2.3.2.6 Capillary pressure ΔPc -- 2.3.3 Pressure difference due to friction forces -- 2.3.3.1 Laminar and turbulent flow -- 2.3.3.2 Laminar flow - the Hagen-Poiseuille equation -- 2.3.3.3 Turbulent flow - the Fanning equation -- 2.3.4 Flow in wicks -- 2.3.4.1 Pressure difference in the liquid phase -- 2.3.4.2 Homogeneous wicks -- 2.3.4.3 Non-homogeneous wicks -- 2.3.5 Vapour phase pressure difference, ΔPv -- 2.3.5.1 Introduction -- 2.3.5.2 Incompressible flow: simple one-dimensional theory -- 2.3.5.3 Incompressible flow - one-dimensional theories of Cotter and Busse -- 2.3.5.4 Pressure recovery -- 2.3.5.5 Two-dimensional incompressible flow -- 2.3.5.6 Compressible flow -- 2.3.5.7 Summary of vapour flow.

2.3.6 Entrainment -- 2.3.7 Heat transfer and temperature difference -- 2.3.7.1 Introduction -- 2.3.7.2 Heat transfer in the evaporator region -- 2.3.7.3 Boiling heat transfer from plane surfaces -- 2.3.7.4 Boiling from wicked surfaces -- 2.3.7.5 Liquid-vapour interface temperature drop -- 2.3.7.6 Wick thermal conductivity -- 2.3.7.7 Heat transfer in the condenser -- 2.4 Application of theory to heat pipes and thermosyphons -- 2.4.1 Wicked heat pipes -- 2.4.1.1 The merit number -- 2.4.1.2 Operating limits -- 2.4.1.3 Burnout -- 2.4.1.4 Gravity-assisted heat pipes -- 2.4.1.5 Total temperature drop -- 2.4.2 Thermosyphons -- 2.4.2.1 Working fluid selection -- 2.4.2.2 Entrainment Limit -- 2.4.2.3 Thermal resistance and maximum heat flux -- 2.5 Nanofluids -- 2.6 Summary -- References -- 3 Heat pipe components and materials -- 3.1 The Working Fluid -- 3.1.1 Nanofluids -- 3.2 The Wick or Capillary Structure -- 3.2.1 Homogeneous structures -- 3.2.2 Arterial wicks -- 3.3 Thermal Resistance of Saturated Wicks -- 3.3.1 Meshes -- 3.3.2 Sintered wicks -- 3.3.3 Grooved wicks -- 3.3.4 Concentric annulus -- 3.3.5 Sintered metal fibres -- 3.3.6 Ceramic wick structures -- 3.4 The Container -- 3.5 Compatibility -- 3.5.1 Historical compatibility data -- 3.5.2 Compatibility of water and steel - a discussion -- 3.5.2.1 The mechanism of hydrogen generation and protective layer formation -- 3.5.2.2 Work specifically related to passivation of mild steel -- 3.5.2.3 Use of an inhibitor -- 3.5.2.4 Production of a protective layer -- 3.5.2.5 Pipes with both inhibitor and oxide layers -- 3.5.2.6 Comments on the water-steel data -- 3.6 How About Water and Aluminium? -- 3.7 Heat Pipe Start-Up Procedure -- References -- 4 Design guide -- 4.1 Introduction -- 4.2 Heat Pipes -- 4.2.1 Fluid inventory -- 4.2.2 Priming -- 4.3 Design Example 1 -- 4.3.1 Specification.

4.3.2 Selection of materials and working fluid -- 4.3.2.1 Sonic limit -- 4.3.2.2 Entrainment limit -- 4.3.2.3 Wicking limit -- 4.3.2.4 Radial heat flux -- 4.3.2.5 Priming of the wick -- 4.3.2.6 Wall thickness -- 4.3.2.7 Conclusions on selection of working fluid -- 4.3.3 Detail design -- 4.3.3.1 Wick selection -- 4.3.3.2 Arterial diameter -- 4.3.3.3 Circumferential liquid distribution and temperature difference -- 4.3.3.4 Arterial wick -- 4.3.3.5 Final analysis -- 4.4 Design Example 2 -- 4.4.1 Problem -- 4.4.2 Solution - original design -- 4.4.3 Solution - revised design -- 4.5 Thermosyphons -- 4.5.1 Fluid inventory -- 4.5.2 Entrainment limit -- 4.6 Summary -- References -- 5 Heat pipe manufacture and testing -- 5.1 Manufacture and Assembly -- 5.1.1 Container materials -- 5.1.2 Wick materials and form -- 5.1.2.1 Wire mesh -- 5.1.2.2 Sintering -- 5.1.2.3 Vapour deposition -- 5.1.2.4 Microlithography and other techniques -- 5.1.2.5 Grooves -- 5.1.2.6 Felts and foams -- 5.1.3 Cleaning of container and wick -- 5.1.4 Material outgassing -- 5.1.5 Fitting of wick and end caps -- 5.1.6 Leak detection -- 5.1.7 Preparation of the working fluid -- 5.1.8 Heat pipe filling -- 5.1.8.1 Description of rig -- 5.1.8.2 Procedure for filling a heat pipe -- 5.1.9 Heat pipe sealing -- 5.1.10 Summary of assembly procedures -- 5.1.11 Heat pipes containing inert gas -- 5.1.11.1 Diffusion at the vapour-gas interface -- 5.1.11.2 Gas bubbles in arterial wick structures -- 5.1.12 Liquid metal heat pipes -- 5.1.13 Liquid metal heat pipes for the temperature range 500-1100°C -- 5.1.13.1 Cleaning and filling -- 5.1.13.2 Sealing -- 5.1.13.3 Operation -- 5.1.13.4 High-temperature liquid metal heat pipes >1200°C -- 5.1.13.5 Gettering -- 5.1.14 Safety aspects -- 5.1.15 3D printed heat pipes -- 5.2 Heat Pipe Life Test Procedures.

5.2.1 Variables to be taken into account during life tests -- 5.2.1.1 The working fluid -- 5.2.1.2 The heat pipe wall -- 5.2.1.3 The wick -- 5.2.2 Life test procedures -- 5.2.2.1 Effect of heat flux -- 5.2.2.2 Effect of temperature -- 5.2.2.3 Compatibility -- 5.2.2.4 Other factors -- 5.2.3 Prediction of long-term performance from accelerated life tests -- 5.2.4 A life test programme -- 5.2.5 Spacecraft qualification plan -- 5.3 Heat Pipe Performance Measurements (See Also Section 5.1.12) -- 5.3.1 The test rig -- 5.3.2 Test procedures -- 5.3.3 Evaluation of a copper heat pipe and typical performance -- 5.3.3.1 Capabilities -- 5.3.3.2 Test procedure -- 5.3.3.3 Test results -- 5.3.4 Tests on thermosyphons to compare working fluids -- References -- 6 Special types of heat pipe -- 6.1 Variable Conductance Heat Pipes -- 6.1.1 Passive control using bellows -- 6.1.2 Hot-reservoir VCHPs -- 6.1.3 Feedback control applied to the VCHP -- 6.1.3.1 Electrical feedback control (active) -- 6.1.3.2 Mechanical feedback control (passive) -- 6.1.3.3 Comparison of systems -- 6.2 Heat Pipe Thermal Diodes and Switches -- 6.2.1 The thermal diode -- 6.2.2 The heat pipe switch -- 6.3 Pulsating (Oscillating) Heat Pipes -- 6.4 Loop Heat Pipes and Capillary Pumped Loops -- 6.4.1 Thermosyphon loops -- 6.5 Microheat Pipes -- 6.6 Use of Electrokinetic Forces -- 6.6.1 Electrokinetics -- 6.6.2 Electrohydrodynamics -- 6.6.3 Optomicrofluidics -- 6.7 Rotating Heat Pipes -- 6.7.1 Factors limiting the heat transfer capacity of the rotating heat pipe -- 6.7.2 Applications of rotating heat pipes -- 6.7.3 Microrotating heat pipes -- 6.8 Miscellaneous Types -- 6.8.1 The sorption heat pipe -- 6.8.2 Magnetic fluid heat pipes -- References -- 7 Applications of the heat pipe -- 7.1 Broad Areas of Application -- 7.2 Heat Pipes in Energy Storage Systems.

7.2.1 Why use heat pipes in energy storage systems -- 7.2.2 Heat pipes in sensible heat storage devices -- 7.2.3 Tunnel structures and earth as a heat 'sink' -- 7.2.4 Nuclear reactors and storage facilities -- 7.2.5 Heat pipes in phase change stores (using PCMs) -- 7.2.5.1 The heat pipe in a passive cooling system for relieving air-conditioning loads -- 7.2.5.2 Field trials of the cooling unit -- 7.2.5.3 System advantages -- 7.3 Heat Pipes in Chemical Reactors -- 7.4 Aircraft and Spacecraft -- 7.4.1 Spacecraft temperature equalisation -- 7.4.2 Component cooling, temperature control and radiator design -- 7.4.3 Aircraft avionics thermal control -- 7.5 Energy Conservation and Renewable Energy -- 7.5.1 Heat pipes in renewable energy systems -- 7.5.1.1 The heat pipe turbine - power from low-grade heat -- 7.5.1.2 Heat pipes in solar energy -- 7.6 Preservation of Permafrost -- 7.7 Snow Melting and Deicing -- 7.8 Heat Pipes in the Food Industry -- 7.8.1 Heat pipes in chilled food display cabinets -- 7.8.2 Cooking, cooling and defrosting meat -- 7.9 Miscellaneous Heat Pipe Applications -- 7.10 Heat Pipe Applications - Bibliography -- References -- 8 Cooling of electronic components -- 8.1 Features of the Heat Pipe -- 8.1.1 Tubular heat pipes -- 8.1.1.1 Electrically isolated heat pipes -- 8.1.2 Flat plate heat pipes -- 8.1.2.1 Embedded heat pipes -- 8.1.2.2 Bent and flattened heat pipes -- 8.1.2.3 Vapour chamber heat pipe -- 8.1.3 Microheat pipes and arrays -- 8.1.4 Loop heat pipes -- 8.1.5 Pulsating heat pipes -- 8.1.6 Direct contact systems -- 8.1.7 Sheet heat pipes -- 8.1.8 Miscellaneous systems -- 8.2 Applications -- 8.2.1 Flexible heat pipes -- 8.2.1.1 Heat pipes to cool a concentrated heat source -- 8.2.1.2 Multi-kilowatt heat pipe assembly -- 8.2.2 Case study - E911 emergency location detection service.

8.2.3 Case study - pole-mounted telecom server heat pipe assembly.
Abstract:
Heat Pipes, 6th Edition, takes a highly practical approach to the design and selection of heat pipes, making it an essential guide for practicing engineers and an ideal text for postgraduate students. This new edition has been revised to include new information on the underlying theory of heat pipes and heat transfer, and features fully updated applications, new data sections, and updated chapters on design and electronics cooling. The book is a useful reference for those with experience and an accessible introduction for those approaching the topic for the first time. Contains all information required to design and manufacture a heat pipe  Suitable for use as a professional reference and graduate text Revised with greater coverage of key electronic cooling applications.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Electronic Access:
Click to View
Holds: Copies: