Cover image for Systems Engineering in Wireless Communications.
Systems Engineering in Wireless Communications.
Title:
Systems Engineering in Wireless Communications.
Author:
Koivo, Heikki Niilo.
ISBN:
9780470021798
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (357 pages)
Contents:
SYSTEMS ENGINEERING IN WIRELESS COMMUNICATIONS -- Contents -- Preface -- List of Abbreviations -- 1 Introduction -- 1.1 Introduction to Telecommunications -- 1.1.1 Transmitter -- 1.1.2 Wireless Channels -- 1.1.3 Receiver -- 1.2 The Quality of Service (QoS) Parameters -- 1.3 Multiple Access Techniques -- 2 Feedback Control Basics -- 2.1 Introduction -- 2.2 Feedback Control -- 2.3 Relay Control (ON-OFF Control) -- 2.4 Proportional-Integral-Derivative (PID) Control -- 2.5 Proportional (P) Control -- 2.6 Integral (I) Controller -- 2.7 Proportional-Integral (PI) Controller -- 2.8 Proportional Derivative (PD) Controller -- 2.9 Proportional-Integral-Derivative (PID) Controller -- 2.10 Practical Issues -- 2.11 Tuning of PID Controllers -- 2.12 Digital Implementation of a PID Controller -- 2.13 Phase-Locked Loop -- 2.14 State-Space Representation -- 2.15 Kalman Filter -- 2.16 Linear Kalman Filter -- 2.17 Fuzzy Control -- 2.17.1 Fuzzification -- 2.17.2 Rule Base -- 2.17.3 Fuzzy Reasoning -- 2.18 Summary -- Exercises -- 3 Channel Modeling -- 3.1 Introduction -- 3.2 Large-Scale Propagation Models -- 3.2.1 Line-of-Sight Path Model -- 3.2.2 Reflection Model -- 3.2.3 Statistical Path-Loss Models -- 3.2.4 Data-Fitting Methods in Path-Loss Modeling -- 3.2.5 Shadow or Log-Normal Fading -- 3.3 Small-Scale Propagation Models and Statistical Multipath Channel Models -- 3.3.1 Multipath Fading -- 3.3.2 Rayleigh Fading Channel -- 3.4 Summary -- 4 Channel Estimation and Prediction -- 4.1 Introduction -- 4.2 Linear Time-Variant (LTV) Channel Model -- 4.2.1 Time-Selective Channel -- 4.2.2 Frequency-Selective Channel -- 4.3 Multivariable Case -- 4.4 Simulation of LTV Systems -- 4.5 Discrete-Time Models -- 4.6 Discrete-Time Models with Noise -- 4.7 Least Squares Identification -- 4.8 Minimum Variance Prediction -- 4.9 Self-Tuning Predictor.

4.10 System Identification with Neural Networks -- 4.11 Summary -- Exercises -- 5 Power Control, Part I: Linear Algebra Perspective -- 5.1 Introduction -- 5.2 Centralized Power Control -- 5.3 Graphical Description of Power Control -- 5.4 Distributed Power Control Algorithms -- 5.4.1 The Linear Iterative Method -- 5.4.2 The Distributed Balancing Algorithm (DBA) -- 5.4.3 The Distributed Power Control (DPC) Scheme -- 5.4.4 The Distributed Constrained Power Control (DCPC) Algorithm -- 5.4.5 The Foschini and Miljanic Algorithm (FMA) -- 5.4.6 The Constrained Second-Order Power Control (CSOPC) Algorithm -- 5.4.7 The Estimated Step Power Control (ESPC) Algorithm -- 5.4.8 The Multi-Objective Distributed Power Control (MODPC) Algorithm -- 5.4.9 The Kalman Filter Distributed Power Control Algorithm -- References -- 6 Power Control II: Control Engineering Perspective -- 6.1 Introduction -- 6.2 Issues in Uplink Power Control -- 6.2.1 Information feedback -- 6.2.2 Decision feedback -- 6.3 Upper Link Power Control with a Relay Controller -- 6.4 PID Control -- 6.5 The Self-Tuning Predictive Power Control Algorithm -- 6.5.1 Predictor Structure -- 6.6 Self-Tuning Power Control -- 6.7 Fuzzy Power Control -- 6.8 Handover -- 6.9 Summary -- Exercises -- 7 Admission and Load Control -- 7.1 Introduction to Admission Control (AC) -- 7.2 Theoretical Analysis of Centralized Admission Control -- 7.3 Non-Interactive Distributed Admission Control (NIDAC) Algorithm -- 7.4 Interactive Distributed Admission Control (IDAC) Algorithm -- 7.5 Admission Control in UMTS -- 7.6 Admission Control for Non-Real-Time Applications -- 7.7 Load Control (LC) -- References -- 8 Combining Different Radio Resources -- 8.1 Some Radio Resources Interrelations -- 8.2 Power and Rate Control -- 8.2.1 Optimal Centralized Power and Rate Control.

8.2.2 Centralized Minimum Total Transmitted Power (CMTTP) Algorithm -- 8.2.3 Maximum Throughput Power Control (MTPC) Algorithm -- 8.2.4 Statistical Distributed Multi-rate Power Control (SDMPC) Algorithm -- 8.2.5 Lagrangian Multiplier Power Control (LRPC) Algorithm -- 8.2.6 Selective Power Control (SPC) Algorithm -- 8.3 Mathematical Formulation of the RRM Problem in the MO Framework -- 8.3.1 Multi-Objective Optimization -- 8.3.2 General Multi-Objective Formulation of RRM -- References -- 9 Smart Antennas -- 9.1 Smart Antennas and Adaptation -- 9.1.1 Conventional Beamformer -- 9.1.2 Null-Steering Beamformer -- 9.1.3 Minimum Variance Distortionless Response (MVDR) Beamformer -- 9.1.4 Minimum Mean Square Error (MMSE) Beamformer -- 9.1.5 Recursive Least Squares (RLS) Algorithm -- 9.1.6 Subspace Methods for Beamforming -- 9.1.7 Adaptive Beamforming using the Kalman Filter -- 9.1.8 Blind Beamforming -- 9.2 Spatial-Temporal Processing -- 9.3 Joining Radio Resources with Beamforming -- 9.4 Multiple-Input Multiple-Output (MIMO) Antennas -- References -- 10 Cognitive Radios and Networks -- 10.1 Concepts of Cognitive Radios -- 10.2 Spectrum Attention of Cognitive Radios -- 10.3 Direct Spectrum Sensing -- 10.3.1 Energy-Based Detection -- 10.3.2 Feature-Based Detection -- 10.4 Cognitive Radio Networks and Game Theory -- 10.5 Systems Engineering and Cognitive Radios -- References -- Bibliography -- Index.
Abstract:
Preface. List of Abbreviations. 1 Introduction. 2 Feedback Control Basics. 3 Channel Modeling. 4 Channel Estimation and Prediction. 5 Power Control, Part I: Linear Algebra Perspective. 6 Power Control II: Control Engineering Perspective. 7 Admission and Load Control. 8 Combining Different Radio Resources. 9 Smart Antennas. 10 Cognitive Radios and Networks. Bibliography. Index.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: