Cover image for LTE, WiMAX and WLAN Network Design, Optimization and Performance Analysis.
LTE, WiMAX and WLAN Network Design, Optimization and Performance Analysis.
Title:
LTE, WiMAX and WLAN Network Design, Optimization and Performance Analysis.
Author:
Korowajczuk, Leonhard.
ISBN:
9781119970477
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (784 pages)
Contents:
LTE, WIMAX and WLAN Network Design, Optimization and Performance Analysis -- Contents -- List of Figures -- List of Tables -- About the Author -- Preface -- Acknowledgements -- List of Abbreviations -- Introduction -- 1 The Business Plan -- 1.1 Introduction -- 1.2 Market Plan -- 1.3 The Engineering Plan -- 1.4 The Financial Plan -- 1.4.1 Capital Expenditure (CAPEX) -- 1.4.2 Operational Expenditure (OPEX) -- 1.4.3 Return of Investment (ROI) -- 1.5 Business Case Questionnaire -- 1.6 Implementing the Business Plan -- 2 Data Transmission -- 2.1 History of the Internet -- 2.2 Network Modeling -- 2.3 Internet Network Architecture -- 2.3.1 Router -- 2.3.2 Hub -- 2.3.3 Bridge -- 2.3.4 Switch -- 2.3.5 Gateway -- 2.4 The Physical Layer -- 2.4.1 Ethernet PHY -- 2.5 The Data Link Layer -- 2.5.1 Ethernet MAC -- 2.6 Network Layer -- 2.6.1 Internet Protocol (IP) -- 2.6.2 Internet Control Message Protocol (ICMP) -- 2.6.3 Multicast and Internet Group Message Protocol (IGMP) -- 2.6.4 Link Layer Control (LLC) -- 2.7 Transport Protocols -- 2.7.1 User Datagram Protocol (UDP) -- 2.7.2 Transmission Control Protocol (TCP) -- 2.8 Routing Protocols -- 2.8.1 Basic IP Routing -- 2.8.2 Routing Algorithms -- 2.9 Application Protocols -- 2.9.1 Applications -- 2.9.2 Data Transfer Protocols -- 2.9.3 Real Time Protocols -- 2.9.4 Network Management Protocols -- 2.10 The World Wide Web (WWW) -- 3 Market Modeling -- 3.1 Introduction -- 3.2 Data Traffic Characterization -- 3.2.1 Circuit-Switched Traffic Characterization -- 3.2.2 Packet-Switched Traffic Characterization -- 3.2.3 Data Speed and Data Tonnage -- 3.3 Service Plan (SP) and Service Level Agreement (SLA) -- 3.4 User Service Classes -- 3.5 Applications -- 3.5.1 Application Types -- 3.5.2 Applications Field Data Collection -- 3.5.3 Application Characterization -- 3.6 Over-Subscription Ratio (OSR) -- 3.7 Services Summary.

3.8 RF Environment -- 3.9 Terminals -- 3.9.1 Terminal Types -- 3.9.2 Terminal Specification -- 3.10 Antenna Height -- 3.11 Geographic User Distribution -- 3.11.1 Geographic Customer Distribution -- 3.11.2 Customer's Distribution Layers -- 3.12 Network Traffic Modeling -- 3.12.1 Unconstrained Busy Hour Data User Traffic -- 3.12.2 Traffic Constraint Factor per Terminal Type -- 3.12.3 Expected Number of Users per Terminal Type -- 3.12.4 Busy Hour Traffic per Subscription -- 3.12.5 Daily Traffic per Subscription -- 3.12.6 Service Plan Tonnage Ranges -- 3.12.7 Number of Subscriptions per Service Plan -- 3.12.8 Total Number of Users -- 3.12.9 Mapping of Portable Terminal Users (MPU) -- 3.12.10 Users' Area Mapping -- 3.12.11 Hourly Traffic Variation -- 3.12.12 Prediction Service Classes (PSC) -- 3.12.13 Traffic Layers Composition -- 3.12.14 Network Traffic per Layer -- 3.13 KPI (Key Performance Indicator) Establishment -- 3.14 Wireless Infrastructure -- 4 Signal Processing Fundamentals -- 4.1 Digitizing Analog Signals -- 4.2 Digital Data Representation in the Frequency Domain (Spectrum) -- 4.3 Orthogonal Signals -- 4.3.1 Sine and Cosine Orthogonality -- 4.3.2 Harmonically Related Signals' Orthogonality -- 4.4 Combining Shifted Copies of a Sine Wave -- 4.5 Carrier Modulation -- 5 RF Channel Analysis -- 5.1 The Signal -- 5.2 The RF Channel -- 5.3 RF Signal Propagation -- 5.3.1 Free Space Loss -- 5.3.2 Diffraction Loss -- 5.3.3 Reflection and Refraction -- 5.4 RF Channel in the Frequency Domain -- 5.4.1 Multipath Fading -- 5.4.2 Shadow Fading -- 5.5 RF Channel in Time Domain -- 5.5.1 Wind Effect -- 5.5.2 Vehicles Effect -- 5.5.3 Doppler Effect -- 5.5.4 Fading Types -- 5.5.5 Multipath Mitigation Procedures -- 5.5.6 Comparing Multipath Resilience in Different Technologies -- 5.6 RF Channel in the Power Domain -- 5.7 Standardized Channel Models.

5.7.1 3GPP Empirical Channel Model -- 5.7.2 3GPP2 Semi-Empirical Channel Model -- 5.7.3 Stanford University Interim (SUI) Semi-Empirical Channel Model -- 5.7.4 Network-Wide Channel Modeling -- 5.8 RF Environment -- 5.8.1 Human Body Attenuation -- 5.8.2 Environment Penetration Attenuation -- 5.8.3 Rain Precipitation -- 5.8.4 Environment Fading -- 5.9 Fading -- 5.9.1 Fading Types -- 5.9.2 Fading Probability -- 5.9.3 Fading Distributions -- 5.9.4 The Rician Distribution (for Short-Term Fading with Combined LOS and NLOS) -- 5.9.5 The Suzuki Distribution (for Combined Long- and Short-Term Fading) -- 5.9.6 Traffic Simulation with Fading -- 6 RF Channel Performance Prediction -- 6.1 Advanced RF Propagation Models -- 6.1.1 Terrain Databases -- 6.1.2 Antenna Orientation -- 6.1.3 Propagation Models -- 6.1.4 Prediction Layers -- 6.1.5 Fractional Morphology -- 6.1.6 Korowajczuk 2D Model for Outdoor and Indoor Propagation -- 6.1.7 Korowajczuk 3D Model -- 6.1.8 CelPlan Microcell Model -- 6.2 RF Measurements and Propagation Model Calibration -- 6.2.1 RF Measurements -- 6.2.2 RF Propagation Parameters Calibration -- 6.3 RF Interference Issues -- 6.3.1 Signal Level Variation and Signal to Interference Ratio -- 6.3.2 Computing Interference -- 6.3.3 Cell Interference Statistical Characterization -- 6.3.4 Interference Outage Matrix -- 6.4 Interference Mitigation Techniques -- 6.4.1 Interference Avoidance -- 6.4.2 Interference Averaging -- 6.5 RF Spectrum Usage and Resource Planning -- 6.5.1 Network Footprint Enhancement -- 6.5.2 Neighborhood Planning -- 6.5.3 Handover Planning -- 6.5.4 Paging Zone Planning -- 6.5.5 Carrier Planning -- 6.5.6 Code Planning -- 6.5.7 Spectrum Efficiency -- 6.6 Availability -- 7 OFDM -- 7.1 Multiplexing -- 7.1.1 Implementation of an Inverse Discrete Fast Fourier Transform (iDFFT) -- 7.1.2 Implementation of a Discrete Fast Fourier Transform.

7.1.3 Peak to Average Power Ratio (PAPR) -- 7.1.4 Single Carrier OFDM (SC-OFDM) -- 7.2 Other PAPR Reduction Methods -- 7.3 De-Multiplexing -- 7.4 Cyclic Prefix -- 7.5 OFDMA -- 7.6 Duplexing -- 7.6.1 FDD (Frequency Division Duplexing) -- 7.6.2 TDD (Time Division Duplexing) -- 7.7 Synchronization -- 7.7.1 Unframed Solution -- 7.7.2 Framed Solution -- 7.8 RF Channel Information Detection -- 7.8.1 Frequency and Time Synchronization -- 7.8.2 RF Channel Equalization and Reference Signals (Pilot) -- 7.8.3 Information Extraction -- 7.9 Error Correction Techniques -- 7.10 Resource Allocation and Scheduling -- 7.10.1 FIFO (First In, First Out) -- 7.10.2 Generalized Processor Sharing (GPS) -- 7.10.3 Fair Queuing (FQ) -- 7.10.4 Max-Min Fairness (MMF) -- 7.10.5 Weighted Fair Queuing (WFQ) -- 7.11 Establishing Wireless Data Communications -- 7.11.1 Data Transmission -- 7.11.2 Data Reception -- 7.11.3 Protocol Layers -- 7.11.4 Wireless Communication Procedure -- 8 OFDM Implementation -- 8.1 Transmit Side -- 8.1.1 Bit Processing -- 8.1.2 Symbol Processing -- 8.1.3 Digital IF Processing -- 8.1.4 Carrier Modulation -- 8.2 Receive Side -- 8.2.1 Carrier Demodulation -- 8.2.2 Digital IF Processing -- 8.2.3 Symbol Processing -- 8.2.4 Bit Processing Stages -- 9 Wireless Communications Network (WCN) -- 9.1 Introduction -- 9.2 Wireless Access Network -- 9.2.1 Subscriber Wireless Stations (SWS) -- 9.2.2 Wireless Base Stations (WBS) -- 9.3 Core Network -- 9.3.1 Access Service Network (ASN) -- 9.3.2 Connectivity Service -- 9.3.3 Application Service -- 9.3.4 Operational Service -- 10 Antenna and Advanced Antenna Systems -- 10.1 Introduction -- 10.2 Antenna Basics -- 10.3 Antenna Radiation -- 10.3.1 Reactive Near Field (Reactive Region) -- 10.3.2 Radiating Near Field (Fresnel Region) -- 10.3.3 Far Field (Fraunhofer Region) -- 10.4 Antenna Types -- 10.4.1 Dipole (Half Wave Dipole).

10.4.2 Quarter Wave Antenna (Whip) -- 10.4.3 Omni Antenna -- 10.4.4 Parabolic Antenna -- 10.4.5 Horn Antenna -- 10.4.6 Antenna Type Comparison -- 10.5 Antenna Characteristics -- 10.5.1 Impedance Matching -- 10.5.2 Antenna Patterns -- 10.5.3 Antenna Polarization -- 10.5.4 Cross-Polarization -- 10.5.5 Antenna Correlation or Signal Coherence -- 10.6 Multiple Antennas Arrangements -- 10.6.1 SISO (Single In to Single Out) -- 10.6.2 SIMO (Single In to Multiple Out) -- 10.6.3 MISO (Multiple In to Single Out) -- 10.6.4 MISO-SIMO -- 10.6.5 MIMO (Multiple In to Multiple Out) -- 10.6.6 Adaptive MIMO Switching (AMS) -- 10.6.7 Uplink MIMO (UL-MIMO) -- 10.7 Receive Diversity -- 10.7.1 Equal Gain Combining (EGC) -- 10.7.2 Diversity Selection Combining (DSC) -- 10.7.3 Maximal Ratio Combining (MRC) -- 10.7.4 Maximal Likelihood Detector (MLD) -- 10.7.5 Performance Comparison for Receive Diversity Techniques -- 10.8 Transmit Diversity -- 10.8.1 Receiver-Based Transmit Selection -- 10.8.2 Transmit Redundancy -- 10.8.3 Space Time Transmit Diversity -- 10.9 Transmit and Receive Diversity (TRD) -- 10.10 Spatial Multiplexing (Matrix B) -- 10.11 Diversity Performance -- 10.12 Antenna Array System (AAS), Advanced Antenna System (AAS) or Adaptive Antenna Steering (AAS) or Beamforming -- 11 Radio Performance -- 11.1 Introduction -- 11.2 Input RF Noise -- 11.3 Receive Circuit Noise -- 11.4 Signal to Noise Ratio -- 11.4.1 Modulation Constellation SNR -- 11.4.2 Error Correction Codes -- 11.4.3 SNR and Throughput -- 11.5 Radio Sensitivity Calculations -- 11.5.1 Modulation Scheme SNR -- 11.5.2 FEC Algorithm Gains -- 11.5.3 Mobility Effect -- 11.5.4 Permutation Effect -- 11.5.5 HARQ Effect -- 11.5.6 Improvement Reduction Factor for Antenna Systems -- 11.5.7 Receive Diversity -- 11.5.8 Transmit Diversity -- 11.5.9 Spatial Multiplexing -- 11.5.10 Spatial Multiplexing.

11.6 Radio Configuration.
Abstract:
A technological overview of LTE and WiMAX LTE, WiMAX and WLAN Network Design, Optimization and Performance Analysis provides a practical guide to LTE and WiMAX technologies introducing various tools and concepts used within. In addition, topics such as traffic modelling of IP-centric networks, RF propagation, fading, mobility, and indoor coverage are explored; new techniques which increase throughput such as MIMO and AAS technology are highlighted; and simulation, network design and performance analysis are also examined. Finally, in the latter part of the book Korowajczuk gives a step-by-step guide to network design, providing readers with the capability to build reliable and robust data networks. By focusing on LTE and WiMAX this book extends current network planning approaches to next generation wireless systems based on OFDMA, providing an essential resource for engineers and operators of fixed and wireless broadband data access networks. With information presented in a sequential format, LTE, WiMAX and WLAN Network Design, Optimization and Performance Analysis aids a progressive development of knowledge, complementing latter graduate and postgraduate courses while also providing a valuable resource to network designers, equipment vendors, reference material, operators, consultants, and regulators. Key Features: One of the first books to comprehensively explain and evaluate LTE Provides an unique explanation of the basic concepts involved in wireless broadband technologies and their applications in LTE, WiMAX, and WLAN before progressing to the network design Demonstrates the application of network planning for LTE and WiMAX with theoretical and practical approaches Includes all aspects of system design and optimization, such as dynamic traffic simulations, multi-layered traffic analysis, statistical interference analysis, and

performance estimations.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: