Cover image for Statistical Mechanics : Algorithms and Computations.
Statistical Mechanics : Algorithms and Computations.
Title:
Statistical Mechanics : Algorithms and Computations.
Author:
Krauth, Werner.
ISBN:
9780191523328
Personal Author:
Physical Description:
1 online resource (355 pages)
Series:
Oxford Master Series in Physics ; v.No. 13

Oxford Master Series in Physics
Contents:
Contents -- 1 Monte Carlo methods -- 1.1 Popular games in Monaco -- 1.1.1 Direct sampling -- 1.1.2 Markov-chain sampling -- 1.1.3 Historical origins -- 1.1.4 Detailed balance -- 1.1.5 The Metropolis algorithm -- 1.1.6 A priori probabilities, triangle algorithm -- 1.1.7 Perfect sampling with Markov chains -- 1.2 Basic sampling -- 1.2.1 Real random numbers -- 1.2.2 Random integers, permutations, and combinations -- 1.2.3 Finite distributions -- 1.2.4 Continuous distributions and sample transformation -- 1.2.5 Gaussians -- 1.2.6 Random points in/on a sphere -- 1.3 Statistical data analysis -- 1.3.1 Sum of random variables, convolution -- 1.3.2 Mean value and variance -- 1.3.3 The central limit theorem -- 1.3.4 Data analysis for independent variables -- 1.3.5 Error estimates for Markov chains -- 1.4 Computing -- 1.4.1 Ergodicity -- 1.4.2 Importance sampling -- 1.4.3 Monte Carlo quality control -- 1.4.4 Stable distributions -- 1.4.5 Minimum number of samples -- Exercises -- References -- 2 Hard disks and spheres -- 2.1 Newtonian deterministic mechanics -- 2.1.1 Pair collisions and wall collisions -- 2.1.2 Chaotic dynamics -- 2.1.3 Observables -- 2.1.4 Periodic boundary conditions -- 2.2 Boltzmann's statistical mechanics -- 2.2.1 Direct disk sampling -- 2.2.2 Partition function for hard disks -- 2.2.3 Markov-chain hard-sphere algorithm -- 2.2.4 Velocities: the Maxwell distribution -- 2.2.5 Hydrodynamics: long-time tails -- 2.3 Pressure and the Boltzmann distribution -- 2.3.1 Bath-and-plate system -- 2.3.2 Piston-and-plate system -- 2.3.3 Ideal gas at constant pressure -- 2.3.4 Constant-pressure simulation of hard spheres -- 2.4 Large hard-sphere systems -- 2.4.1 Grid/cell schemes -- 2.4.2 Liquid-solid transitions -- 2.5 Cluster algorithms -- 2.5.1 Avalanches and independent sets -- 2.5.2 Hard-sphere cluster algorithm -- Exercises -- References.

3 Density matrices and path integrals -- 3.1 Density matrices -- 3.1.1 The quantum harmonic oscillator -- 3.1.2 Free density matrix -- 3.1.3 Density matrices for a box -- 3.1.4 Density matrix in a rotating box -- 3.2 Matrix squaring -- 3.2.1 High-temperature limit, convolution -- 3.2.2 Harmonic oscillator (exact solution) -- 3.2.3 Infinitesimal matrix products -- 3.3 The Feynman path integral -- 3.3.1 Naive path sampling -- 3.3.2 Direct path sampling and the Lévy construction -- 3.3.3 Periodic boundary conditions, paths in a box -- 3.4 Pairdensity matrices -- 3.4.1 Two quantum hard spheres -- 3.4.2 Perfect pair action -- 3.4.3 Many-particle density matrix -- 3.5 Geometry of paths -- 3.5.1 Paths in Fourier space -- 3.5.2 Pathmaxima, correlation functions -- 3.5.3 Classical random paths -- Exercises -- References -- 4 Bosons -- 4.1 Ideal bosons (energy levels) -- 4.1.1 Single-particle density of states -- 4.1.2 Trapped bosons (canonical ensemble) -- 4.1.3 Trapped bosons (grand canonical ensemble) -- 4.1.4 Large-N limit in the grand canonical ensemble -- 4.1.5 Differences between ensembles-.uctuations -- 4.1.6 Homogeneous Bose gas -- 4.2 The ideal Bose gas (density matrices) -- 4.2.1 Bosonic density matrix -- 4.2.2 Recursive counting of permutations -- 4.2.3 Canonical partition function of ideal bosons -- 4.2.4 Cycle-length distribution, condensate fraction -- 4.2.5 Direct-sampling algorithm for ideal bosons -- 4.2.6 Homogeneous Bose gas, winding numbers -- 4.2.7 Interacting bosons -- Exercises -- References -- 5 Order and disorder in spin systems -- 5.1 The Ising model-exact computations -- 5.1.1 Listing spin configurations -- 5.1.2 Thermodynamics, specific heat capacity, and magnetization -- 5.1.3 Listing loop configurations -- 5.1.4 Counting (not listing) loops in two dimensions -- 5.1.5 Density of states from thermodynamics.

5.2 The Ising model-Monte Carlo algorithms -- 5.2.1 Local sampling methods -- 5.2.2 Heat bath and perfect sampling -- 5.2.3 Cluster algorithms -- 5.3 Generalized Ising models -- 5.3.1 The two-dimensional spin glass -- 5.3.2 Liquids as Ising-spin-glass models -- Exercises -- References -- 6 Entropic forces -- 6.1 Entropic continuum models and mixtures -- 6.1.1 Random clothes-pins -- 6.1.2 The Asakura-Oosawa depletion interaction -- 6.1.3 Binary mixtures -- 6.2 Entropic lattice model: dimers -- 6.2.1 Basic enumeration -- 6.2.2 Breadth-.rst and depth-first enumeration -- 6.2.3 Pfaffian dimer enumerations -- 6.2.4 Monte Carlo algorithms for the monomer-dimer problem -- 6.2.5 Monomer-dimer partition function -- Exercises -- References -- 7 Dynamic Monte Carlo methods -- 7.1 Random sequential deposition -- 7.1.1 Faster-than-the-clock algorithms -- 7.2 Dynamic spin algorithms -- 7.2.1 Spin-flips and dice throws -- 7.2.2 Accelerated algorithms for discrete systems -- 7.2.3 Futility -- 7.3 Disks on the unit sphere -- 7.3.1 Simulated annealing -- 7.3.2 Asymptotic densities and paper-cutting -- 7.3.3 Polydisperse disks and the glass transition -- 7.3.4 Jamming and planar graphs -- Exercises -- References -- Acknowledgements -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- O -- P -- R -- S -- T -- U -- V -- W -- Y -- Z.
Abstract:
This book discusses the computational approach in modern statistical physics, adopting simple language and an attractive format of many illustrations, tables and printed algorithms. The discussion of key subjects in classical and quantum statistical physics will appeal to students, teachers and researchers in physics and related sciences. The focus is on orientation with implementation details kept to a minimum. - ;This book discusses the computational approach in modern statistical physics in a clear and accessible way and demonstrates its close relation to other approaches in theoretical physics. Individual chapters focus on subjects as diverse as the hard sphere liquid, classical spin models, single quantum particles and Bose-Einstein condensation. Contained within the chapters are in-depth discussions of algorithms, ranging from basic enumeration methods to modern Monte Carlo techniques. The emphasis is on orientation, with discussion of implementation details kept to a minimum. Illustrations, tables and concise printed algorithms convey key information, making the material very accessible. The book is completely self-contained and graphs and tables can readily be reproduced,. requiring minimal computer code. Most sections begin at an elementary level and lead on to the rich and difficult problems of contemporary computational and statistical physics. The book will be of interest to a wide range of students, teachers and researchers in physics and the neighbouring sciences. 'This book is the best one I have reviewed all year.' Alan Hinchliffe, Physical Sciences Educational Reviews -.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: