Cover image for Metal Matrix Composites : Materials, Manufacturing and Engineering.
Metal Matrix Composites : Materials, Manufacturing and Engineering.
Title:
Metal Matrix Composites : Materials, Manufacturing and Engineering.
Author:
Batraev, Igor.
ISBN:
9783110315448
Personal Author:
Physical Description:
1 online resource (263 pages)
Series:
Advanced Composites ; v.3

Advanced Composites
Contents:
Metal Matrix Composites -- Also of Interest -- Title Page -- Copyright Page -- Preface -- Table of Contents -- List of contributing authors -- 1 Metal matrix composites for thermal management -- 1.1 Introduction -- 1.2 Composite materials for thermal management -- 1.2.1 Liquid infiltration -- 1.2.2 Powder metallurgy -- 1.3 Design and modeling of metal matrix composites for electronics -- 1.3.1 Volume fraction of ceramic phase -- 1.3.2 Thermal conductivity -- 1.3.3 Coefficient of thermal expansion -- 1.4 Families of advanced metal matrix composite materials for electronics -- 1.4.1 SiC-based composites -- 1.4.2 Carbon-based composites -- 1.4.2.1 Composites based on graphite particles, carbon fibers or carbon nanotubes -- 1.4.2.2 Composites based on graphite flakes -- 1.4.2.3 Composites based on graphite foams -- 1.4.3 Diamond-based composites -- 1.5 The future of metal matrix composites in electronics -- References -- 2 Recent research and developments on the mechanical behavior of CNT-reinforced metal matrix composites -- 2.1 Introduction -- 2.2 CNT-Al composites -- 2.3 CNT-Co composites -- 2.4 CNT-Cu composites -- 2.5 CNT-Fe composites -- 2.6 CNT-Mg composites -- 2.7 CNT-Ni composites -- 2.8 CNT-Ti composites -- 2.9 Concluding remarks -- References -- 3 Novel preparation and mechanical properties of in situ synthesized (TiB+La2O3)/TiNbTaZr composites -- 3.1 Introduction -- 3.1.1 The application of rare earth elements in β titanium alloys -- 3.1.2 The influence of rare earth elements in titanium alloys -- 3.1.3 Biosafety of rare earth elements -- 3.1.3.1 TiB reinforcement in titanium alloys -- 3.2 Materials preparation and experimental procedures -- 3.2.1 Materials preparation -- 3.2.2 Experimental procedures -- 3.2.2.1 Microstructure observation -- 3.2.2.2 Phase analysis -- 3.2.2.3 Mechanical properties tests -- 3.3 Results and discussions.

3.3.1 Phase analysis -- 3.3.2 Thermodynamic analysis -- 3.3.3 Microstructure analysis -- 3.3.4 Microstructure of reinforcements -- 3.3.5 Analysis of the solidification mechanism -- 3.3.6 Superelasticity -- 3.3.7 In situ characterization of microstructure -- 3.3.8 Mechanical properties -- 3.4 Conclusions -- References -- 4 Microstructure formation of particle-reinforced metal matrix composite coatings produced by thermal spraying -- Introduction -- 4.1 Particle-reinforced MMC coatings formed ex situ by thermalspraying of powder mixtures and composite particles -- 4.2 MMC coatings with reinforcing particles formed in situ duringthermal spraying -- 4.3 Design of particle-reinforced MMC coatings using flexible variation of spraying parameters in computer-controlled detonation spraying -- 4.4 Post-spray treatment of MMC coatings -- Summary -- References -- 5 Fabrication of Al-metal matrix composites by liquid stirring technique -- 5.1 Introduction -- 5.2 Fabrication of Aluminium metal matrix composites -- 5.2.1 Fabrication of the stirring arrangement -- 5.2.2 Mold-making and preparation of the mold cavity -- 5.2.3 Estimation of raw materials for Al/5, 10, 15 wt.% reinforced MMC casting -- 5.2.4 Experimental procedure -- 5.3 Physical, chemical and mechanical properties of stir cast samples -- 5.3.1 Physical property of stir cast samples -- 5.3.2 Mechanical properties of stir cast samples -- 5.3.3 Analysis of the reinforced weight fraction -- 5.3.4 Microstructural characterization -- 5.4 Optimization of stir casting parameters for Al/15 wt.% SiC-MMC -- 5.4.1 S/N Ratio for micro-hardness of prepared Al/15 wt.% SiC-MMC -- 5.4.2 ANOVA for micro hardness of prepared Al/15 wt.% SiC-MMC -- 5.4.3 Mathematical model for micro hardness of prepared Al/15 wt.% SiC-MMC -- 5.4.4 S/N Ratio for tensile strength of prepared Al/15 wt.% SiC-MMC.

5.4.5 ANOVA for tensile strength of prepared Al/15 wt.% SiC-MMC -- 5.4.6 Mathematical model for tensile strength of prepared Al/15 wt.% SiC-MMC -- 5.5 Conclusion -- References -- 6 Material removal processes for metal matrix composites -- 6.1 Introduction -- 6.2 Conventional machining processes -- 6.2.1 Turning of PMMCs -- 6.2.2 Milling of PMMCs -- 6.2.3 Drilling of PMMCs -- 6.3 Unconventional machining of MMCs -- 6.3.1 Electrochemical machining of PMMCs -- 6.3.1.1 Input process parameters and output responses -- 6.3.2 Electric discharge machining of PMMCs -- 6.3.2.1 Input process parameters and output responses -- 6.3.3 Ultrasonic machining of PMMCs -- 6.3.3.1 Input process parameters and output responses -- 6.4 Conclusion -- References -- 7 An investigation into machining Al/SiC metalmatrix composites -- 7.1 Milling of metal matrix composites -- 7.1.1 Introduction -- 7.1.2 Experimental procedure -- 7.1.2.1 Material synthesizing -- 7.1.2.2 Experimental setup -- 7.1.3 Results and discussion -- 7.1.3.1 Chip formation mechanism -- 7.1.3.2 Effect of Hyperlox coating on tool wear -- 7.2 Summary -- 7.3 Drilling of metal matrix composites -- 7.3.1 Introduction -- 7.3.2 Experimental setup and procedure -- 7.3.3 Results and discussion -- 7.3.3.1 Effect of drilling parameters on thrust force and torque -- 7.3.3.2 Effect of drilling parameters on hole quality -- 7.3.3.3 Effect of drilling parameters on drill life -- 7.3.4 Summary -- References -- 8 Application of response surface method and desirability function for the optimization of machining parameters of hybrid metal matrix (Al/SiC/Al2O3) composites -- 8.1 Introduction -- 8.2 Materials and methods -- 8.2.1 Fabrication of hybrid metal matrix composites -- 8.2.2 Machining experiment -- 8.3 Modeling and optimization -- 8.3.1 Modeling of machining parameters using the response surface method.

8.3.2 Optimization of machining parameters using the desirability function approach (DFA) -- 8.4 Results and discussion -- 8.5 Conclusions -- References -- Index.
Abstract:
Metal Matrix Composites (MMC's) have found an increased use in various industries duetotheir special mechanical and physical properties. They are a composite material with at least two constituent parts, one being a metal and are made by dispersing a reinforcing material into a metal matrix. The markets are: telecommunications, automotive, power semiconductor, opto-electronics, military and aerospace, heavy transportation, space systems and satellites, medical, and industrial lighting. Applications within these markets include microwave, micro-electronic packaging, laser diode, HB-LED's, and advanced radar.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Electronic Access:
Click to View
Holds: Copies: