Cover image for Modulation and Coding Techniques in Wireless Communications.
Modulation and Coding Techniques in Wireless Communications.
Title:
Modulation and Coding Techniques in Wireless Communications.
Author:
Semenov , Sergei.
ISBN:
9780470976760
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (682 pages)
Contents:
MODULATION AND CODING TECHNIQUES IN WIRELESS COMMUNICATIONS -- Contents -- About the Editors -- List of Contributors -- Acknowledgements -- Introduction -- 1 Channel Models and Reliable Communication -- 1.1 Principles of Reliable Communication -- 1.2 AWGN -- 1.2.1 Baseband Representation of AWGN -- 1.2.2 From Sample SNR to Eb/N0 -- 1.3 Fading Processes in Wireless Communication Channels -- 1.3.1 Large-Scale Fading (Path Loss) -- 1.3.2 Medium-Scale Fading (Shadowing) -- 1.3.3 Small-Scale Fading (Multipath Propagation) -- 1.4 Modelling Frequency-Nonselective Fading -- 1.4.1 Rayleigh and Rice Distributions -- 1.4.2 Maximum Doppler Frequency Shift -- 1.4.3 Wide-Sense Stationary Stochastic Processes -- 1.4.4 Rayleigh and Rice Models for Frequency-Nonselective Fading -- 1.4.5 SNR in Rayleigh Fading Channels -- 1.5 WSSUS Models for Frequency-Selective Fading -- 1.5.1 Basic Principles -- 1.5.2 Definitions -- References -- 2 Modulation -- 2.1 Basic Principles of Bandpass Modulation -- 2.1.1 The Complex Representation of a Bandpass Signal -- 2.1.2 Representation of Signal with Basis Functions -- 2.1.3 Pulse Shaping -- 2.1.4 Matched Filter -- 2.2 PSK -- 2.2.1 BPSK -- 2.2.2 QPSK -- 2.2.3 M-PSK -- 2.2.4 DPSK -- 2.2.5 OQPSK -- 2.2.6 /4-QPSK -- 2.3 MSK -- 2.3.1 GMSK -- 2.4 QAM -- 2.5 OFDM -- References -- 3 Block Codes -- 3.1 Main Definitions -- 3.2 Algebraic Structures -- 3.3 Linear Block Codes -- 3.4 Cyclic Codes -- 3.5 Bounds on Minimum Distance -- 3.6 Minimum Distance Decoding -- 3.7 Information Set Decoding -- 3.8 Hamming Codes -- 3.9 Reed-Solomon Codes -- 3.10 BCH Codes -- 3.11 Decoding of BCH Codes -- 3.12 Sudan Algorithm and Its Extensions -- 3.13 LDPC Codes -- 3.13.1 LDPC Constructions -- 3.13.2 Decoding of LDPC Codes -- References -- 4 Convolutional Codes and Turbo-Codes -- 4.1 Convolutional Codes Representation and Encoding.

4.2 Viterbi Decoding Algorithm -- 4.2.1 Hard Decision Viterbi Algorithm -- 4.2.2 Soft Decision Viterbi Algorithm -- 4.3 List Decoding -- 4.4 Upper Bound on Bit Error Probability for Viterbi Decoding -- 4.5 Sequential Decoding -- 4.5.1 Stack Algorithm -- 4.5.2 Fano Algorithm -- 4.6 Parallel-Concatenated Convolutional Codes and Soft Input Soft Output Decoding -- 4.7 SISO Decoding Algorithms -- 4.7.1 MAP Algorithm and Its Variants -- 4.7.2 Soft-In/Soft-Out Viterbi Algorithm (SOVA) -- References -- 4.A Modified Chernoff Bound and Some Applications -- References -- 5 Equalization -- 5.1 Equalization with Filtering -- 5.1.1 Zero-Forcing Equalization -- 5.1.2 MMSE Equalization -- 5.1.3 DFE -- 5.2 Equalization Based on Sequence Estimation -- 5.2.1 MLSE Equalization -- 5.2.2 Sphere Detection -- 5.3 RAKE Receiver -- 5.4 Turbo Equalization -- 5.5 Performance Comparison -- References -- 6 ARQ -- 6.1 Basic ARQ Schemes -- 6.1.1 Basic Concepts -- 6.1.2 Stop-and-Wait ARQ -- 6.1.3 ARQ with N Steps Back (Go Back N, GBN) -- 6.1.4 ARQ with Selective Repeat (SR) -- 6.2 Hybrid ARQ -- 6.2.1 Type-I Hybrid ARQ (Chase Combining) -- 6.2.2 Type-II Hybrid ARQ (Full IR) -- 6.2.3 Type-III Hybrid ARQ (Partial IR) -- References -- 7 Coded Modulation -- 7.1 Principle of Coded Modulation -- 7.1.1 Illustrative Example -- 7.2 Modulation Mapping by Signal Set Partitioning -- 7.3 Ungerboeck Codes -- 7.4 Performance Estimation of TCM System -- 7.4.1 Squared Distance Structure of PSK and QAM Constellations -- 7.4.2 Upper Bound on Error Event Probability and Bit Error Probability for TCM -- References -- 8 MIMO -- 8.1 MIMO Channel Model -- 8.1.1 Fading in Narrowband Channels -- 8.1.2 Fading Countermeasures: Diversity -- 8.1.3 MIMO Channel model -- 8.2 Space-Time Coding -- 8.2.1 Maximum Ratio Combining -- 8.2.2 Definition of Space-Time Codes.

8.2.3 Space-Time Codes with Two Transmitting Antennas -- 8.2.4 Construction Criteria for Space-Time Codes -- 8.3 Orthogonal Designs -- 8.3.1 Real Orthogonal Designs -- 8.3.2 Complex Orthogonal Designs -- 8.3.3 Decoding of Space-Time Codes -- 8.3.4 Error Probability for Orthogonal Space-Time Codes -- 8.4 Space-Time Trellis Codes -- 8.4.1 Space-Time Trellis Codes -- 8.4.2 Space-Time Turbo Trellis Codes -- 8.5 Differential Space-Time Codes -- 8.6 Spatial Multiplexing -- 8.6.1 General Concepts -- 8.6.2 V-BLAST -- 8.6.3 D-BLAST -- 8.6.4 Turbo-BLAST -- 8.7 Beamforming -- References -- 9 Multiple Access Methods -- 9.1 Frequency Division Multiple Access -- 9.1.1 Spectral Reuse -- 9.1.2 OFDMA -- 9.1.3 SC-FDMA -- 9.1.4 WDMA -- 9.2 Time Division Multiple Access -- 9.3 Code Division Multiple Access -- 9.3.1 Direct-Sequence CDMA -- 9.3.2 Frequency-Hopping CDMA -- 9.4 Advanced MA Methods -- 9.4.1 Multicarrier CDMA -- 9.4.2 Random OFDMA -- 9.4.3 DHA-FH-CDMA -- 9.5 Random Access Multiple Access Methods -- 9.6 Conclusions -- References -- 10 Standardization in IEEE 802.11, 802.16 -- 10.1 IEEE Overview -- 10.2 Standard Development Process -- 10.3 IEEE 802.11 Working Group -- 10.4 IEEE 802.16 Working Group -- 10.5 IEEE 802.11 -- 10.5.1 Overview and Scope -- 10.5.2 Frequency Plan -- 10.5.3 Reference Model -- 10.5.4 Architecture -- 10.5.5 802.11a -- 10.5.6 802.11b -- 10.5.7 802.11g -- 10.5.8 802.11n -- 10.5.9 Future Developments -- 10.6 IEEE 802.16x -- 10.6.1 Key PHY Features of the IEEE 802.16e -- 10.6.2 IEEE 802.16m -- References -- 11 Standardization in 3GPP -- 11.1 Standardization Process and Organization -- 11.1.1 General -- 11.1.2 Organization of 3GPP -- 11.1.3 Organization of TSG RAN -- 11.1.4 Standardization Process -- 11.1.5 3GPP Releases -- 11.1.6 Frequency Bands and 3GPP Releases -- 11.1.7 RAN Specifications -- 11.2 3G WCDMA.

11.2.1 WCDMA Concept Logical, Transport and Physical Channels -- 11.2.2 Logical and Transport Channels -- 11.2.3 Physical Channels -- 11.2.4 Coding, Spreading and Modulation -- 11.2.5 Cell Search -- 11.2.6 Power Control Procedures -- 11.2.7 Handover Procedures -- 11.2.8 Transmit Diversity -- 11.3 3.5G HSDPA/HSUPA -- 11.3.1 HSDPA -- 11.3.2 HSUPA -- 11.3.3 CPC -- 11.4 4G LTE -- 11.4.1 LTE Downlink -- 11.4.2 LTE Uplink -- References -- 12 CDMA2000 and Its Evolution -- 12.1 Development of 3G CDMA2000 Standard -- 12.1.1 IS-95 Family of Standards (cdmaOne) -- 12.1.2 IS-2000 Family of Standards -- 12.2 Reverse Channel of Physical Layer in CDMA2000 Standard -- 12.2.1 Reverse Channel Structure -- 12.2.2 Forward Error Correction (FEC) -- 12.2.3 Codeword Symbols Repetition -- 12.2.4 Puncturing -- 12.2.5 Block Interleaving -- 12.2.6 Orthogonal Modulation and Orthogonal Spreading -- 12.2.7 Direct Sequence Spreading and Quadrature Spreading -- 12.2.8 Frame Quality Indicator -- 12.3 Forward Channel of Physical Layer in CDMA2000 Standard -- 12.3.1 Forward Channel Structure -- 12.3.2 Forward Error Correction -- 12.3.3 Codeword Symbols Repetition -- 12.3.4 Puncturing -- 12.3.5 Block Interleaving -- 12.3.6 Sequence Repetition -- 12.3.7 Data Scrambling -- 12.3.8 Orthogonal and Quasi-Orthogonal Spreading -- 12.3.9 Quadrature Spreading -- 12.3.10 Frame Quality Indicator -- 12.4 Architecture Model of CDMA2000 1xEV-DO Standard -- 12.4.1 Structure of Physical Layer Packet -- 12.4.2 FCS Computation -- 12.5 Access Terminal of the CDMA2000 1xEV-DO Standard -- 12.5.1 Power Control -- 12.5.2 Reverse Channel Structure -- 12.5.3 Modulation Parameters and Transmission Rates -- 12.5.4 Access Channel -- 12.5.5 Reverse Traffic Channel -- 12.5.6 Encoding -- 12.5.7 Channel Interleaving and Repetition -- 12.5.8 Quadrature Spreading -- 12.6 Access Network of the CDMA2000 1xEV-DO Standard.

12.6.1 Forward Channel Structure -- 12.6.2 Modulation Parameters and Transmission Rates -- 12.6.3 Pilot Channel -- 12.6.4 Forward MAC Channel -- 12.6.5 Control Channel -- 12.6.6 Forward Traffic Channel -- 12.6.7 Time-Division Multiplexing -- 12.6.8 Quadrature Spreading -- References -- Index.
Abstract:
Professor E. Krouk has worked in the field of communication theory and techniques for more than 30 years. His areas of interests are coding theory, the mathematical theory of communications and cryptography. He is now the Dean of the Information Systems and Data Protection Faculty of the Saint-Petersburg State University of Aerospace Instrumentation. He is author of 3 books, more than 100 scientific articles and 30 international and Russian patents. Sergei Semenov received his Ph.D. degree from St.-Petersburg State University for Airspace Instrumentation (SUAI), Russia in 1993. Dr. Semenov joined Nokia Corporation in 1999 and is currently a Specialist in Modem Algorithm Design/Wireless Modem. His research interests include coding and communication theory and their application to communication systems.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: