Cover image for Graphical Models : Methods for Data Analysis and Mining.
Graphical Models : Methods for Data Analysis and Mining.
Title:
Graphical Models : Methods for Data Analysis and Mining.
Author:
Steinbrecher, Matthias.
ISBN:
9780470749562
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (405 pages)
Series:
Wiley Series in Computational Statistics Ser.
Contents:
Graphical Models -- Contents -- Preface -- 1 Introduction -- 1.1 Data and Knowledge -- 1.2 Knowledge Discovery and Data Mining -- 1.2.1 The KDD Process -- 1.2.2 Data Mining Tasks -- 1.2.3 Data Mining Methods -- 1.3 Graphical Models -- 1.4 Outline of this Book -- 2 Imprecision and Uncertainty -- 2.1 Modeling Inferences -- 2.2 Imprecision and Relational Algebra -- 2.3 Uncertainty and Probability Theory -- 2.4 Possibility Theory and the Context Model -- 2.4.1 Experiments with Dice -- 2.4.2 The Context Model -- 2.4.3 The Insufficient Reason Principle -- 2.4.4 Overlapping Contexts -- 2.4.5 Mathematical Formalization -- 2.4.6 Normalization and Consistency -- 2.4.7 Possibility Measures -- 2.4.8 Mass Assignment Theory -- 2.4.9 Degrees of Possibility for Decision Making -- 2.4.10 Conditional Degrees of Possibility -- 2.4.11 Imprecision and Uncertainty -- 2.4.12 Open Problems -- 3 Decomposition -- 3.1 Decomposition and Reasoning -- 3.2 Relational Decomposition -- 3.2.1 A Simple Example -- 3.2.2 Reasoning in the Simple Example -- 3.2.3 Decomposability of Relations -- 3.2.4 Tuple-Based Formalization -- 3.2.5 Possibility-Based Formalization -- 3.2.6 Conditional Possibility and Independence -- 3.3 Probabilistic Decomposition -- 3.3.1 A Simple Example -- 3.3.2 Reasoning in the Simple Example -- 3.3.3 Factorization of Probability Distributions -- 3.3.4 Conditional Probability and Independence -- 3.4 Possibilistic Decomposition -- 3.4.1 Transfer from Relational Decomposition -- 3.4.2 A Simple Example -- 3.4.3 Reasoning in the Simple Example -- 3.4.4 Conditional Degrees of Possibility and Independence -- 3.5 Possibility versus Probability -- 4 Graphical Representation -- 4.1 Conditional Independence Graphs -- 4.1.1 Axioms of Conditional Independence -- 4.1.2 Graph Terminology -- 4.1.3 Separation in Graphs -- 4.1.4 Dependence and Independence Maps.

4.1.5 Markov Properties of Graphs -- 4.1.6 Markov Equivalence of Graphs -- 4.1.7 Graphs and Decompositions -- 4.1.8 Markov Networks and Bayesian Networks -- 4.2 Evidence Propagation in Graphs -- 4.2.1 Propagation in Undirected Trees -- 4.2.2 Join Tree Propagation -- 4.2.3 Other Evidence Propagation Methods -- 5 Computing Projections -- 5.1 Databases of Sample Cases -- 5.2 Relational and Sum Projections -- 5.3 Expectation Maximization -- 5.4 Maximum Projections -- 5.4.1 A Simple Example -- 5.4.2 Computation via the Support -- 5.4.3 Computation via the Closure -- 5.4.4 Experimental Evaluation -- 5.4.5 Limitations -- 6 Naive Classifiers -- 6.1 Naive Bayes Classifiers -- 6.1.1 The Basic Formula -- 6.1.2 Relation to Bayesian Networks -- 6.1.3 A Simple Example -- 6.2 A Naive Possibilistic Classifier -- 6.3 Classifier Simplification -- 6.4 Experimental Evaluation -- 7 Learning Global Structure -- 7.1 Principles of Learning Global Structure -- 7.1.1 Learning Relational Networks -- 7.1.2 Learning Probabilistic Networks -- 7.1.3 Learning Possibilistic Networks -- 7.1.4 Components of a Learning Algorithm -- 7.2 Evaluation Measures -- 7.2.1 General Considerations -- 7.2.2 Notation and Presuppositions -- 7.2.3 Relational Evaluation Measures -- 7.2.4 Probabilistic Evaluation Measures -- 7.2.5 Possibilistic Evaluation Measures -- 7.3 Search Methods -- 7.3.1 Exhaustive Graph Search -- 7.3.2 Greedy Search -- 7.3.3 Guided Random Graph Search -- 7.3.4 Conditional Independence Search -- 7.4 Experimental Evaluation -- 7.4.1 Learning Probabilistic Networks -- 7.4.2 Learning Possibilistic Networks -- 8 Learning Local Structure -- 8.1 Local Network Structure -- 8.2 Learning Local Structure -- 8.3 Experimental Evaluation -- 9 Inductive Causation -- 9.1 Correlation and Causation -- 9.2 Causal and Probabilistic Structure -- 9.3 Faithfulness and Latent Variables.

9.4 The Inductive Causation Algorithm -- 9.5 Critique of the Underlying Assumptions -- 9.6 Evaluation -- 10 Visualization -- 10.1 Potentials -- 10.2 Association Rules -- 11 Applications -- 11.1 Diagnosis of Electrical Circuits -- 11.1.1 Iterative Proportional Fitting -- 11.1.2 Modeling Electrical Circuits -- 11.1.3 Constructing a Graphical Model -- 11.1.4 A Simple Diagnosis Example -- 11.2 Application in Telecommunications -- 11.3 Application at Volkswagen -- 11.4 Application at DaimlerChrysler -- A Proofs of Theorems -- A.1 Proof of Theorem 4.1.2 -- A.2 Proof of Theorem 4.1.18 -- A.3 Proof of Theorem 4.1.20 -- A.4 Proof of Theorem 4.1.26 -- A.5 Proof of Theorem 4.1.28 -- A.6 Proof of Theorem 4.1.30 -- A.7 Proof of Theorem 4.1.31 -- A.8 Proof of Theorem 5.4.8 -- A.9 Proof of Lemma 7.2.2 -- A.10 Proof of Lemma 7.2.4 -- A.11 Proof of Lemma 7.2.6 -- A.12 Proof of Theorem 7.3.1 -- A.13 Proof of Theorem 7.3.2 -- A.14 Proof of Theorem 7.3.3 -- A.15 Proof of Theorem 7.3.5 -- A.16 Proof of Theorem 7.3.7 -- B Software Tools -- Bibliography -- Index.
Abstract:
"The text provides graduate students, and researchers with all the necessary background material, including modelling under uncertainty, decomposition of distributions, graphical representation of distributions, and applications relating to graphical models and problems for further research."  (Zentralblatt Math, 1 August 2013) "All of the necessary background is provided, with material on modeling under uncertainty and imprecision modeling, decomposition of distributions, graphical representation of distributions, applications relating to graphical models, and problems for further research." (Book News, December 2009).
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: