Cover image for Introduction to Nanoscience.
Introduction to Nanoscience.
Title:
Introduction to Nanoscience.
Author:
Lindsay, Stuart.
ISBN:
9780191562556
Personal Author:
Physical Description:
1 online resource (470 pages)
Contents:
Contents -- 1 What is Nanoscience? -- 1.1 About size scales -- 1.2 History -- 1.3 Feynman scorecard -- 1.4 Schrödinger's cat-quantum mechanics in small systems -- 1.5 Fluctuations and "Darwinian Nanoscience" -- 1.6 Overview of quantum effects and fluctuations in nanostructures -- 1.7 What to expect in the rest of this book -- 1.8 Bibliography -- 1.9 Exercises -- References -- Part I: The Basics -- 2 Quantum mechanics -- 2.1 Why physics is different for small systems-the story of the Hitachi experiment -- 2.2 The uncertainty principle -- 2.3 The Hitachi microscope as a quantum system -- 2.4 Probability amplitudes and the rules of quantum mechanics -- 2.5 A word about "composite" particles -- 2.6 Wavefunctions -- 2.7 Dirac notation -- 2.8 Many particle wavefunctions and identical particles -- 2.9 The Pauli exclusion principle -- 2.10 The Schrödinger equation: a tool for calculating probability amplitudes -- 2.11 Problems involving more than one electron -- 2.12 Solution of the one-electron time-independent Schrödinger equation for a constant potential -- 2.13 Electron tunneling through a potential barrier -- 2.14 The Hitachi experiment with wavefunctions -- 2.15 Some important results obtained with simple 1-D models -- 2.16 The hydrogen atom -- 2.17 Multielectron atoms -- 2.18 The periodic table of the elements -- 2.19 Approximate methods for solving the Schrödinger equation -- 2.20 Chemical bonds -- 2.21 Eigenstates for interacting systems and quasiparticles -- 2.22 Getting away from wavefunctions: density functional theory -- 2.23 Bibliography -- 2.24 Exercises -- References -- 3 Statistical mechanics and chemical kinetics -- 3.1 Macroscopic description of systems of many particles -- 3.2 How systems get from here to there: entropy and kinetics -- 3.3 The classical probability distribution for noninteracting particles.

3.4 Entropy and the Boltzmann distribution -- 3.5 An example of the Boltzmann distribution: ions in a solution near an electrode -- 3.6 The equipartition theorem -- 3.7 The partition function -- 3.8 The partition function for an ideal gas -- 3.9 Free energy, pressure, and entropy of an ideal gas from the partition function -- 3.10 Quantum gasses -- 3.11 Fluctuations -- 3.12 Brownian motion -- 3.13 Diffusion -- 3.14 Einstein-Smoluchowski relation -- 3.15 Fluctuations, chemical reactions, and the transition state -- 3.16 The Kramers theory of reaction rates -- 3.17 Chemical kinetics -- 3.18 Acid-base reactions as an example of chemical equilibrium -- 3.19 The Michaelis-Menten relation and on-off rates in nano-bio interactions -- 3.20 Rate equations in small systems -- 3.21 Nanothermodynamics -- 3.22 Modeling nanosystems explicitly: molecular dynamics -- 3.23 Systems far from equilibrium: Jarzynski's equality -- 3.24 Fluctuations and quantum mechanics -- 3.25 Bibliography -- 3.26 Exercises -- References -- Part II: Tools -- 4 Microscopy and manipulation tools -- 4.1 The scanning tunneling microscope -- 4.2 The atomic force microscope -- 4.3 Electron microscopy -- 4.4 Nano-measurement techniques based on fluorescence -- 4.5 Tweezers for grabbing molecules -- 4.6 Chemical kinetics and single molecule experiments -- 4.7 Bibliography -- 4.8 Exercises -- References -- 5 Making nanostructures: top down -- 5.1 Overview of nanofabrication: top down -- 5.2 Photolithography -- 5.3 Electron beam lithography -- 5.4 Micromechanical structures -- 5.5 Thin film technologies -- 5.6 Molecular beam epitaxy -- 5.7 Self-assembled masks -- 5.8 Focused ion beam milling -- 5.9 Stamp technology -- 5.10 Nanoscale junctions -- 5.11 Bibliography -- 5.12 Exercises -- References -- 6 Making nanostructures: bottom up -- 6.1 Common aspects of all bottom-up assembly methods.

6.2 Organic synthesis -- 6.3 Weak interactions between molecules -- 6.4 Vesicles and micelles -- 6.5 Thermodynamic aspects of self-assembling nanostructures -- 6.6 A self-assembled nanochemistry machine-the mitochondrion -- 6.7 Self-assembled molecular monolayers -- 6.8 Kinetic control of growth: nanowires and quantum dots -- 6.9 DNA nanotechnology -- 6.10 Bibliography -- 6.11 Exercises -- References -- Part III: Applications -- 7 Electrons in nanostructures -- 7.1 The vast variation in the electronic properties of materials -- 7.2 Electrons in nanostructures and quantum effects -- 7.3 Fermi liquids and the free electron model -- 7.4 Transport in free electron metals -- 7.5 Electrons in crystalline solids: Bloch's theorem -- 7.6 Electrons in crystalline solids: band structure -- 7.7 Electrons in 3D-why copper conducts -- Fermi surfaces and Brillouin zones -- 7.8 Electrons passing through tiny structures: the Landauer resistance -- 7.9 Charging nanostructures: the Coulomb blockade -- 7.10 The single electron transistor -- 7.11 Resonant tunneling -- 7.12 Coulomb blockade or resonant tunneling? -- 7.13 Electron localization and system size -- 7.14 Bibliography -- 7.15 Exercises -- References -- 8 Molecular electronics -- 8.1 Why molecular electronics? -- 8.2 Lewis structures as a simple guide to chemical bonding -- 8.3 The variational approach to calculating molecular orbitals -- 8.4 The hydrogen molecular ion revisited -- 8.5 Hybridization of atomic orbitals -- 8.6 Making diatomic molecules from atoms with both s- and p-states -- 8.7 Molecular levels in organic compounds: the Hückel model -- 8.8 Delocalization energy -- 8.9 Quantifying donor and acceptor properties with electrochemistry -- 8.10 Electron transfer between molecules-the Marcus theory -- 8.11 Charge transport in weakly interacting molecular solids-hopping conductance.

8.12 Concentration gradients drive current in molecular solids -- 8.13 Dimensionality, 1-D conductors, and conducting polymers -- 8.14 Single molecule electronics -- 8.15 Wiring a molecule: single molecule measurements -- 8.16 The transition from tunneling to hopping conductance in single molecules -- 8.17 Gating molecular conductance -- 8.18 Where is molecular electronics going? -- 8.19 Bibliography -- 8.20 Exercises -- References -- 9 Nanostructured materials -- 9.1 What is gained by nanostructuring materials? -- 9.2 Nanostructures for electronics -- 9.3 Zero-dimensional electronic structures: quantum dots -- 9.4 Nanowires -- 9.5 2-D nanoelectronics: superlattices and heterostructures -- 9.6 Photonic applications of nanoparticles -- 9.7 2-D photonics for lasers -- 9.8 3-D photonic bandgap materials -- 9.9 Physics of magnetic materials -- 9.10 Superparamagnetic nanoparticles -- 9.11 A 2-D nanomagnetic device: giant magnetoresistance -- 9.12 Nanostructured thermal devices -- 9.13 Nanofluidic devices -- 9.14 Nanofluidic channels and pores for molecular separations -- 9.15 Enhanced fluid transport in nanotubes -- 9.16 Superhydrophobic nanostructured surfaces -- 9.17 Biomimetic materials -- 9.18 Bibliography -- 9.19 Exercises -- References -- 10 Nanobiology -- 10.1 Natural selection as the driving force for biology -- 10.2 Introduction to molecular biology -- 10.3 Some mechanical properties of proteins -- 10.4 What enzymes do -- 10.5 Gatekeepers-voltage-gated channels -- 10.6 Powering bio-nanomachines: where biological energy comes from -- 10.7 Adenosine triphosphate-the gasoline of biology -- 10.8 The thermal ratchet mechanism -- 10.9 Types of molecular motor -- 10.10 The central role of fluctuations in biology -- 10.11 Do nanoscale fluctuations play a role in the evolution of the mind? -- 10.12 Bibliography -- 10.13 Exercises -- References.

A: Units, conversion factors, physical quantities, and useful math -- A.1 Length -- A.2 Mass and force -- A.3 Time -- A.4 Pressure -- A.5 Energy and temperature -- A.6 Electromagnetism -- A.7 Constants -- A.8 Some useful material properties -- A.9 Some useful math -- B: There's plenty of room at the bottom -- C: Schrödinger equation for the hydrogen atom -- C.1 Angular momentum operators -- C.2 Angular momentum eigenfunctions -- C.3 Solution of the Schrödinger equation in a central potential -- D: The damped harmonic oscillator -- E: Free energies and choice of ensemble -- E.1 Different free energies for different problems -- E.2 Different statistical ensembles for different problems -- F: Probabilities and the definition of entropy -- G: The Gibbs distribution -- H: Quantum partition function for a single particle -- I: Partition function for N particles in an ideal gas -- J: Atomic units -- K: Hückel theory for benzene -- L: A glossary for nanobiology -- M: Solutions and hints for the problems -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Y -- Z.
Abstract:
This is the first text in nanoscience that integrates the physics, chemistry and biology of this new discipline. Each topic is treated assuming no background, but a conceptual emphasis and numerous examples and problems lead the reader to make contact with current research literature.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: