Cover image for 3D Video : From Capture to Diffusion.
3D Video : From Capture to Diffusion.
Title:
3D Video : From Capture to Diffusion.
Author:
Lucas, Laurent.
ISBN:
9781118761922
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (482 pages)
Contents:
Cover -- Title page -- Contents -- Foreword -- Notations -- Acknowledgments -- Introduction -- PART 1. 3D ACQUISITION OF SCENES -- Chapter 1. Foundation -- 1.1. Introduction -- 1.2. A short history -- 1.2.1. The pinhole model -- 1.2.2. Depth perception and binocular vision -- 1.2.3. Multiview systems -- 1.3. Stereopsis and 3D physiological aspects -- 1.3.1. Psychophysical indices -- 1.3.2. Monocular indices -- 1.3.3. Ocular indices -- 1.3.4. Binocular indices -- 1.4. 3D computer vision -- 1.5. Conclusion -- 1.6. Bibliography -- Chapter 2. Digital Cameras: Definitions and Principles -- 2.1. Introduction -- 2.2. Capturing light: physical fundamentals -- 2.2.1. Radiometry and photometry -- 2.2.2. Wavelengths and color spaces -- 2.3. Digital camera -- 2.3.1. Optical components -- 2.3.2. Electrical components -- 2.3.3. Principal functions and their control -- 2.3.4. Storage formats for images -- 2.4. Cameras, human vision and color -- 2.4.1. Adapting optics and electronics to human perception -- 2.4.2. Controlling color -- 2.5. Improving current performance -- 2.5.1. HDR imaging -- 2.5.2. Hyperspectral acquisition -- 2.6. Conclusion -- 2.7. Bibliography -- Chapter 3. Multiview Acquisition Systems -- 3.1. Introduction: what is a multiview acquisition system? -- 3.2. Binocular systems -- 3.2.1. Technical description -- 3.2.2. Principal uses -- 3.2.3. Related databases -- 3.3. Lateral or directional multiview systems -- 3.3.1. Technical description -- 3.3.2. Principal uses -- 3.3.3. Related databases -- 3.4. Global or omnidirectional multiview systems -- 3.4.1. Technical description -- 3.4.2. Principal uses -- 3.4.3. Related databases -- 3.5. Conclusion -- 3.6. Bibliography -- Chapter 4. Shooting and Viewing Geometries in 3DTV -- 4.1. Introduction -- 4.2. The geometry of 3D viewing -- 4.2.1. Description -- 4.2.2. Setting the parametric model.

4.3. The geometry of 3D shooting -- 4.3.1. Choosing a convenient geometry -- 4.3.2. Setting the parametric model -- 4.4. Geometric impact of the 3D workflow -- 4.4.1. Rendered-to-shot space mapping -- 4.4.2. 3D space distortion model -- 4.5. Specification methodology for multiscopic shooting -- 4.5.1. Controlling depth distortion -- 4.5.2. Accurate depth effect -- 4.6. OpenGL implementation -- 4.7. Conclusion -- 4.8. Bibliography -- Chapter 5. Camera Calibration: Geometric and Colorimetric Correction -- 5.1. Introduction -- 5.2. Camera calibration -- 5.2.1. Introduction -- 5.2.2. Camera model -- 5.2.3. Calibration using a sight -- 5.2.4. Automatic methods -- 5.3. Radial distortion -- 5.3.1. Introduction -- 5.3.2. When to correct distortion? -- 5.3.3. Radial distortion correction models -- 5.4. Image rectification -- 5.4.1. Introduction -- 5.4.2. Problems -- 5.4.3. Image-based methods -- 5.4.4. Camera-based methods -- 5.4.5. Correcting more than two images simultaneously -- 5.5. Colorimetric considerations in cameras -- 5.5.1. Elements of applied colorimetry -- 5.5.2. Colorimetric calibration in cameras -- 5.6. Conclusion -- 5.7. Bibliography -- PART 2. DESCRIPTION/RECONSTRUCTION OF 3D SCENES -- Chapter 6. Feature Points Detection and Image Matching -- 6.1. Introduction -- 6.2. Feature points -- 6.2.1. Point detection -- 6.2.2. Edge-based feature points -- 6.2.3. Stable regions: IBR and MSER -- 6.3. Feature point descriptors -- 6.3.1. Scale-invariant feature transform -- 6.3.2. Gradient Location and Orientation Histogram -- 6.3.3. The DAISY descriptor -- 6.3.4. Speeded-Up Robust Features (SURF) -- 6.3.5. Multi-scale Oriented Patches (MOPS) -- 6.3.6. Shape context -- 6.4. Image matching -- 6.4.1. Descriptor matching -- 6.4.2. Correspondence group detection -- 6.5. Conclusion -- 6.6. Bibliography.

Chapter 7. Multi- and Stereoscopic Matching, Depth and Disparity -- 7.1. Introduction -- 7.2. Difficulties, primitives and stereoscopic matching -- 7.2.1. Difficulties -- 7.2.2. Primitives and density -- 7.3. Simplified geometry and disparity -- 7.4. A description of stereoscopic and multiscopic methods -- 7.4.1. Local and global matching algorithms -- 7.4.2. Principal constraints -- 7.4.3. Energy costs -- 7.5. Methods for explicitly accounting for occlusions -- 7.5.1. A local stereoscopic method - seeds propagation -- 7.5.2. A global multiscopic method -- 7.6. Conclusion -- 7.7. Bibliography -- Chapter 8. 3D Scene Reconstruction and Structuring -- 8.1. Problems and challenges -- 8.2. Silhouette-based reconstruction -- 8.2.1. Silhouette extraction methods -- 8.2.2. Reconstruction methods -- 8.2.3. Improving volume reconstruction -- 8.3. Industrial application -- 8.3.1. Hardware acceleration -- 8.3.2. Results -- 8.4. Temporally structuring reconstructions -- 8.4.1. Generalized skeletal extraction -- 8.4.2. Calculating displacement fields -- 8.5. Conclusion -- 8.6. Bibliography -- Chapter 9. Synthesizing Intermediary Viewpoints -- 9.1. Introduction -- 9.2. Viewpoint synthesis by interpolation and extrapolation -- 9.2.1. Direct and inverse projections -- 9.2.2. Reducing distortions in viewpoint synthesis -- 9.2.3. Viewpoint interpolation -- 9.3. Inpainting uncovered zones -- 9.3.1. Overview of 2D inpainting techniques -- 9.3.2. 3D Inpainting -- 9.4. Conclusion -- 9.5. Bibliography -- PART 3. STANDARDS AND COMPRESSION OF 3D VIDEO -- Chapter 10. Multiview Video Coding (MVC) -- 10.1. Introduction -- 10.2. Specific approaches to stereoscopy -- 10.2.1. Formats -- 10.2.2. Associated coding techniques -- 10.3. Multiview approaches -- 10.3.1. Formats -- 10.3.2. Associated coding techniques -- 10.4. Conclusion -- 10.5. Bibliography.

Chapter 11. 3D Mesh Compression -- 11.1. Introduction -- 11.2. Compression basics: rate-distortion trade-off -- 11.3. Multiresolution coding of surface meshes -- 11.4. Topological and progressive coding -- 11.4.1. Monoresolution compression -- 11.4.2. Multiresolution compression -- 11.5. Mesh sequence compression -- 11.5.1. Definitions -- 11.5.2. Methods using spatio-temporal prediction -- 11.5.3. Methods with prior segmentation -- 11.5.4. Transform-based methods -- 11.6. Quality evaluation: classic and perceptual metrics -- 11.6.1. Classic metrics -- 11.6.2. Perceptual metrics -- 11.7. Conclusion -- 11.8. Bibliography -- Chapter 12. Coding Methods for Depth Videos -- 12.1. Introduction -- 12.2. Analyzing the characteristics of a depth map -- 12.3. Depth coding methods -- 12.3.1. Methods using the intrinsic characteristics of depth maps -- 12.3.2. Methods exploiting correlation with associated textures -- 12.3.3. Methods optimizing depth coding for the quality of synthesized views -- 12.4. Conclusion -- 12.5. Bibliography -- Chapter 13. Stereoscopic Watermarking -- 13.1. Introduction -- 13.2. Constraints of stereoscopic video watermarking -- 13.2.1. Theoretical framework -- 13.2.2. Properties -- 13.2.3. Corpus -- 13.2.4. Conclusion -- 13.3. State of the art for stereoscopic content watermarking -- 13.4. Comparative study -- 13.4.1. Transparency -- 13.4.2. Robustness -- 13.4.3. Computation cost -- 13.4.4. Conclusion -- 13.5. Conclusions -- 13.6. Bibliography -- PART 4. RENDERING AND 3D DISPLAY -- Chapter 14. HD 3DTV and Autostereoscopy -- 14.1. Introduction -- 14.2. Technological principles -- 14.2.1. Stereoscopic systems using glasses -- 14.2.2. Autostereoscopic displays -- 14.2.3. Optical elements -- 14.2.4. Measurement of autostereoscopic display -- 14.3. Design of mixing filters -- 14.4. View generation and interleaving.

14.4.1. Virtual view generation -- 14.4.2. View interleaving -- 14.5. Future developments -- 14.6. Conclusion -- 14.7. Bibliography -- Chapter 15. Augmented and/or Mixed Reality -- 15.1. Introduction -- 15.2. Real-time pose computation -- 15.2.1. Pose computation requirements -- 15.2.2. Image/model mapping -- 15.2.3. Pose computation: principal PnP algorithms -- 15.2.4. Pose computation and planar surfaces -- 15.3. Model acquisition -- 15.3.1. Offline modeling -- 15.3.2. Online modeling -- 15.4. Conclusion -- 15.5. Bibliography -- Chapter 16. Visual Comfort and Fatigue in Stereoscopy -- 16.1. Introduction -- 16.2. Visual comfort and fatigue: definitions and indications -- 16.2.1. Visual fatigue -- 16.2.2. Visual comfort and discomfort -- 16.2.3. Detection and evaluation of visual fatigue and discomfort -- 16.3. Signs and symptoms of fatigue and discomfort -- 16.3.1. Ocular and ocularmotor fatigue -- 16.3.2. Cognitive fatigue -- 16.3.3. Signs and symptoms linked to discomfort -- 16.4. Sources of visual fatigue and discomfort -- 16.4.1. Ocular constraints -- 16.4.2. Cognitive constraints -- 16.5. Application to 3D content and technologies -- 16.5.1. The comfort zone -- 16.5.2. Reproduction artifacts -- 16.5.3. Focus and blurring effects -- 16.5.4. Visual attention -- 16.5.5. Flaws or absence of the motion parallax -- 16.5.6. Exposure duration and training -- 16.6. Predicting visual fatigue and discomfort: first models -- 16.7. Conclusion -- 16.8. Bibliography -- Chapter 17. 2D-3D Conversion -- 17.1. Introduction -- 17.2. The 2D-3D conversion workflow -- 17.3. Preparing content for conversion -- 17.3.1. Depth script -- 17.3.2. The advantage of video over fixed images -- 17.3.3. The automatic conversion trap -- 17.3.4. Specific cases of automatic conversion -- 17.3.5. Optimal content for 2D-3D conversion -- 17.4. Conversion stages.

17.4.1. The segmentation stage.
Abstract:
While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century. The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide the necessary elements for understanding the underlying computer-based science of these technologies. They consider applications and perspectives previously unexplored due to technological limitations. This book guides the reader through the production process of 3D videos; from acquisition, through data treatment and representation, to 3D diffusion. Several types of camera systems are considered (multiscopic or multiview) which lead to different acquisition, modeling and storage-rendering solutions. The application of these systems is also discussed to illustrate varying performance benefits, making this book suitable for students, academics, and also those involved in the film industry.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: