Cover image for Principles of Biomedical Engineering.
Principles of Biomedical Engineering.
Title:
Principles of Biomedical Engineering.
Author:
Madihally, Sundararajan V.
ISBN:
9781608070565
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (498 pages)
Contents:
Principles of Biomedical Engineering -- Contents -- Acknowledgments -- Chapter 1 Introduction -- 1.1 Overview -- 1.2 Roles of Bioengineers -- 1.3 History of Bioengineering -- 1.3.1 Development of Biomedical Imaging -- 1.3.2 Development of Dialysis -- 1.3.3 Development of the Heart-Lung Machine -- 1.3.4 Other Devices -- 1.4 Literature Sources -- Problems -- Selected Bibliography -- Chapter 2 Biotransport -- 2.1 Overview -- 2.2 Fundamental Factors -- 2.2.1 Fluid Compartments -- 2.2.2 Concentration -- 2.2.3 Pressure -- 2.2.4 Body pH -- 2.3 Diffusion -- 2.3.1 Free Diffusion -- 2.3.2 Facilitated Diffusion -- 2.3.3 Active Transport -- 2.4 Osmosis -- 2.4.1 Osmolarity -- 2.4.2 Tonicity -- 2.4.3 Osmotic Pressure -- 2.4.4 Osmometers -- 2.5 Transport Across Membranes -- 2.6 Transport of Macromolecules -- Problems -- References -- Selected Bibliography -- Chapter 3 Bioelectrical Phenomena -- 3.1 Overview -- 3.2 Membrane Potential -- 3.2.1 Nernst Equation -- 3.2.2 Donnan Equilibrium -- 3.2.3 Goldman Equation -- 3.3 Electrical Equivalent Circuit -- 3.3.1 Cell Membrane Conductance -- 3.3.2 Cell Membrane as a Capacitor -- 3.3.3 Resistance-Capacitance Circuit -- 3.3.4 Action Potential -- 3.3.5 Intracellular Recording of Bioelectricity -- 3.4 Volume Conductors -- 3.4.1 Electric Field -- 3.4.2 Electrical Potential Energy -- 3.4.3 Conservation of Charge -- 3.4.4 Measuring the Electrical Activity of Tissues: Example of the Electrocardiogram -- 3.4.5 Biopotential Recording Practicalities -- Problems -- Selected Bibliography -- Chapter 4 Biofluid Flow -- 4.1 Overview -- 4.2 Fluid Flow Characteristics -- 4.2.1 Conservation of Mass -- 4.2.2 Inertial and Viscous Forces -- 4.2.3 Conservation of Momentum -- 4.3 Nonidealities in Biological Systems -- 4.3.1 Oscillatory and Pulsating Flows -- 4.3.2 Alterations in Viscosity -- 4.3.3 Infl uence Fluid Flow on Blood.

4.4 Conservation of Energy -- 4.4.1 Different Energy Forms -- 4.4.2 Energy Balance in the Body -- 4.4.3 Energy Expenditure Calculations -- 4.5 Fluid Power -- 4.5.1 Power Calculations in a Cardiac Cycle -- 4.5.2 Efficiency of a Pump -- 4.5.3 Pumps in Series and Parallel -- 4.6 Optimization Principle for Fluid Transport -- 4.6.1 Minimum Work of Circulation -- Problems -- References -- Selected Bibliography -- Chapter 5 Biomechanics -- 5.1 Overview -- 5.2 Equations of Motion -- 5.2.1 Center of Mass -- 5.2.2 Newton's Laws of Motion -- 5.2.3 Leverage -- 5.2.4 Impulse-Momentum Relation -- 5.2.5 Gait Analysis (Motion Analysis) -- 5.3 Ideal Stress-Strain Characteristics -- 5.3.1 Structural Parameters and Material Parameters -- 5.3.2 Axial Stress and Strain -- 5.3.3 Shear Stress -- 5.3.4 Bending -- 5.3.5 Torsion -- 5.4 Nonidealities in Stress-Strain Characterization -- 5.4.1 Failure Under Combined Loading -- 5.4.2 Viscoelastic Characteristics -- 5.4.3 Dynamic Loading -- 5.5 Energy Conservation -- 5.5.1 Conservation of Energy -- 5.5.2 Energy Absorption -- Problems -- References -- Selected Bibliography -- Chapter 6 Biomaterials -- 6.1 Overview -- 6.2 Types of Biomaterials -- 6.2.1 Metals and Alloys -- 6.2.2 Ceramics -- 6.2.3 Polymers -- 6.2.4 Biological Materials -- 6.2.5 Composites -- 6.3 Material Characteristics -- 6.3.1 Mechanical Performance -- 6.3.2 Mechanical Durability -- 6.3.3 Corrosion and Degradation -- 6.3.4 Surface Roughness -- 6.3.5 Sterilization Techniques -- 6.4 Physiological Responses to Biomaterials -- 6.4.1 Toxicity Analysis -- 6.4.2 Surface Adhesion -- 6.4.3 Blood-Material Interactions -- 6.4.4 Inflammatory Response -- 6.4.5 Infection -- 6.5 Tissue Engineering -- 6.5.1 Material Selection -- 6.5.2 Scaffold Formation Techniques -- Problems -- References -- Selected Bibliography -- Chapter 7 Cellular Engineering -- 7.1 Overview.

7.2 Cellular Interactions -- 7.2.1 Cell Culture Microenvironment -- 7.2.2 Cell-Soluble Factor Interactions -- 7.2.3 Cell-Matrix Interactions -- 7.2.4 Cell-Cell Interactions -- 7.3 Cellular Processes -- 7.3.1 Migration -- 7.3.2 Proliferation and Differentiation -- 7.3.3 Metabolism -- 7.3.4 Intracellular Degradation -- 7.4 Bioreactors -- 7.4.1 Different Shapes of Bioreactors -- 7.4.2 Different Modes of Operation -- 7.4.3 Downstream Processing -- 7.5 Preservation of Cells and Tissues -- 7.5.1 Long-Term Storage of Cells -- 7.5.2 Storage of Tissues -- Problems -- References -- Selected Bibliography -- Chapter 8 Biomedical Imaging -- 8.1 Overview -- 8.2 Properties of Light -- 8.2.1 Electromagnetic Spectrum -- 8.2.2 Energy in an EM Wave -- 8.2.3 Generation of EM Radiation -- 8.3 Interaction of Radiation with Matter -- 8.3.1 Absorption of EM Waves -- 8.3.2 Scattering of EM Waves -- 8.3.3 Transmission Imaging -- 8.4 Basics of Imaging -- 8.4.1 Image Acquisition -- 8.4.2 Digitizing Images -- 8.4.3 3D Image Reconstruction -- 8.4.4 Image Quality -- 8.5 Imaging Devices -- 8.5.1 X-Ray Imaging -- 8.5.2 Positron Emission Tomography (PET) -- 8.5.3 Magnetic Resonance Imaging (MRI) -- 8.5.4 Ultrasound Imaging -- 8.5.5 Optical Coherence Tomography (OCT) -- 8.5.6 Endoscopes -- 8.5.7 Fluorescence Imaging -- Problems -- References -- Selected Bibliography -- Chapter 9 Biosensors -- 9.1 Overview -- 9.2 Bioelectrodes -- 9.2.1 Electrode-Electrolyte Interface -- 9.2.2 Polarization -- 9.2.3 Potential Monitoring Electrodes -- 9.3 Biosensing Elements -- 9.3.1 Enzyme-Based Biosensors -- 9.3.2 Antibody-Based Biosensors -- 9.3.3 Nucleic Acid-Based Biosensors -- 9.3.4 Cell-Based Biosensors -- 9.4 Transducing Elements -- 9.4.1 Electrochemical Biosensors -- 9.4.2 Optical Transducers -- 9.4.3 Acoustic Transducers -- 9.4.4 Other Transducers -- 9.5 Manufacturing Technology.

9.5.1 Performance Parameters -- 9.5.2 Immobilization Strategies -- 9.5.3 Microelectromechanical Systems (MEMS) -- 9.5.4 Microarray Technology -- 9.6 Bioinformatics -- Problems -- References -- Selected Bibliography -- Chapter 10 Physiological Modeling -- 10.1 Overview -- 10.2 Compartmental Modeling -- 10.2.1 Chemical Compartmental Model -- 10.2.2 Single Electrical Compartmental Model -- 10.2.3 Other Single Compartmental Systems -- 10.2.4 Multicompartmental Models -- 10.3 Special Cases of Compartmental Modeling -- 10.3.1 Modeling Dialysis -- 10.3.2 Cable Theory -- 10.4 Modeling Diffusion-Limited Processes -- 10.4.1 Case 1: Reaction-Diffusion in Cartesian Coordinates -- 10.4.2 Case 2: The Krogh Tissue Cylinder -- 10.4.3 Case 3: One-Dimensional Radial Diffusion in Spherical Coordinates -- 10.4.4 Complex Model Systems -- Problems -- References -- Selected Bibliography -- Chapter 11 Ethical, Legal, and Societal Aspects -- 11.1 Overview -- 11.2 Fundamentals of Bioethics -- 11.2.1 Classical Ethical Theories -- 11.2.2 Difference Between Ethics and Law -- 11.2.3 Infl uence of Religion and Culture -- 11.3 Research Involving Human Participants -- 11.3.1 The Declaration of Helsinki -- 11.3.2 Belmont Report -- 11.3.3 Institutional Review Board (IRB) -- 11.3.4 Informed Consent -- 11.4 Standards -- 11.4.1 Standards and Guidelines -- 11.4.2 International Electromedical Commission (IEC) -- 11.4.3 International Organization for Standardization (ISO) -- 11.5 Regulatory Agencies -- 11.5.1 The Food and Drug Administration -- 11.5.2 Device Classifi cation -- 11.5.3 Compliance Requirements -- Problems -- References -- Selected Bibliography -- About the Author -- Index.
Abstract:
Describing the role of engineering in medicine today, this comprehensive volume covers a wide range of the most important topics in this burgeoning field. Supported with over 145 illustrations, the book discusses bioelectrical systems, mechanical analysis of biological tissues and organs, biomaterial selection, compartmental modeling, and biomedical instrumentation. Moreover, you find a thorough treatment of the concept of using living cells in various therapeutics and diagnostics.Structured as a complete text for students with some engineering background, the book also makes a valuable reference for professionals new to the bioengineering field. This authoritative textbook features numerous exercises and problems in each chapter to help ensure a solid understanding of the material.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: