Cover image for Ray and Wave Chaos in Ocean Acoustics : Chaos in Waveguides.
Ray and Wave Chaos in Ocean Acoustics : Chaos in Waveguides.
Title:
Ray and Wave Chaos in Ocean Acoustics : Chaos in Waveguides.
Author:
Makarov, Denis.
ISBN:
9789814273183
Personal Author:
Physical Description:
1 online resource (412 pages)
Series:
Series on Complexity, Nonlinearity and Chaos ; v.1

Series on Complexity, Nonlinearity and Chaos
Contents:
Contents -- Preface -- 1. Ray and Wave Propagation -- 1.1 Underwater Sound Channel -- 1.2 Basic Equations -- 1.2.1 Helmholtz equation -- 1.2.2 Parabolic equation -- 1.3 Geometrical Optics Approximations and Optical- Mechanical Analogy. The Hamiltonian Formalism -- 1.3.1 Eikonal and transport equations -- 1.3.2 Momentum-position variables -- 1.3.3 Action-angle variables in a range-independent waveguide -- 1.3.3.1 Canonical transformation -- 1.3.3.2 Ray path in the unperturbed waveguide -- 1.3.3.3 Canonical transformation in the form of Fourier series -- 1.3.4 Action-angle variables in a range-dependent waveguide -- 1.3.4.1 Slow range variation of the sound speed field -- 1.3.4.2 Weak variation of the sound speed field -- 1.3.5 Geometrical optics for the Helmholtz equation -- 1.3.5.1 Eikonal and transport equations -- 1.3.5.2 Momentum-position variables -- 1.3.5.3 Action-angle variables -- 1.4 Ray Travel Times -- 1.4.1 Timefront -- 1.4.2 Travel time as a function of starting momentum -- 1.5 Range-Dependent Environments -- 1.5.1 Internal waves -- 1.5.2 Rossby waves -- 1.5.3 Currents -- 1.5.4 Eddies -- 1.6 Acoustic Ocean Tomography -- 1.7 Experiments on Long-Range Sound Propagation -- 1.7.1 The Heard Island Feasibility Test -- 1.7.2 Experiments with bottom-mounted sources -- 1.7.2.1 Downsloped bathymetry near a source -- 1.7.3 Acoustic Engineering Test -- 1.7.4 Alternate Source Test -- 1.7.5 Acoustic Thermometry of Ocean Climate -- 1.8 Summary -- 2. Ray Chaos -- 2.1 Hamiltonian Chaos -- 2.1.1 Dynamics of Hamiltonian systems -- 2.1.2 Statistical description of Hamiltonian chaos -- 2.2 Lyapunov Instability -- 2.3 Ray-Medium Resonance -- 2.4 Overlapping of Resonances -- 2.5 Vertical Resonance -- 2.5.1 Adiabatic approximation -- 2.5.2 Passage through a resonance -- 2.5.2.1 Scattering on a resonance -- 2.5.2.2 Capturing into a resonance.

2.5.3 Vertical resonance versus ray-medium resonance -- 2.5.4 Resonance-induced chaotic layer -- 2.5.5 Influence of vertical resonance on a timefront of a received pulse -- 2.6 Manifestation of Regular and Chaotic Ray Motion in Distributions of Ray Travel Times -- 2.6.1 Perturbed waveguide -- 2.6.2 Timefront -- 2.6.3 Amplitude of a pulse signal in plane "travel time-depth" -- 2.6.4 Gap between travel times of chaotic and regular rays -- 2.6.5 "Focusing" of ray travel times -- 2.6.6 Role of stickiness and chaotic jets in "focusing" of ray travel times -- 2.6.7 Smoothed intensity of pulse signal -- 2.7 Summary -- 3. Wave Chaos -- 3.1 The Problem of Wave Chaos -- 3.1.1 Ehrenfest time -- 3.1.2 Semiclassical propagator -- 3.1.3 Fidelity or overlap of wave fields -- 3.1.4 Dynamical localization -- 3.2 Normal Modes -- 3.2.1 Range-independent waveguide -- 3.2.1.1 Eigenfunctions and eigenvalues in the WKB approximation -- 3.2.1.2 Mode amplitudes -- 3.2.1.3 Brillouin waves -- 3.2.1.4 Matrix elements -- 3.2.1.5 Ray-mode relations -- 3.2.2 Range-dependent waveguide -- 3.2.2.1 Coupled mode equations: slow and strong range dependence -- 3.2.2.2 Coupled mode equations: weak range dependence -- 3.2.3 Normal modes corresponding to the Helmholtz equation -- 3.2.3.1 Range-independent waveguide -- 3.2.3.2 Mode amplitudes -- 3.2.3.3 Brillouin waves -- 3.2.3.4 Range-dependent waveguide -- 3.2.4 Ray-based description of mode amplitudes -- 3.2.4.1 Parabolic equation -- 3.2.4.2 Helmholtz equation -- 3.2.5 Floquet modes of a periodic waveguide -- 3.3 Mode Coupling Under Chaotic Conditions -- 3.3.1 Spatial mode-medium resonance -- 3.3.2 Mode medium resonance and Floquet modes -- 3.3.3 Manifestations of stable islands and chaotic sea in structures of the Floquet modes -- 3.3.4 Scarring -- 3.4 Influence of Fine-Scale Inhomogeneities on Wave Dynamics -- 3.4.1 Introductory remarks.

3.4.2 Mode coupling in the presence of a fine structure -- 3.4.3 Influence of vertical oscillations of a sound-speed perturbation on Floquet modes -- 3.4.3.1 λz = 2000 m. -- 3.4.3.2 λz = 1000 m. -- 3.4.3.3 λz = 500 m -- 3.4.3.4 λz = 200 m -- 3.5 Summary -- 4. Chaotic Phenomena in Random Environment -- 4.1 Ray Chaos in a Random Medium -- 4.1.1 Statistical description of chaotic ray dynamics -- 4.1.2 Environmentalmodel -- 4.1.3 Fokker-Planck equation for action -- 4.1.4 Evaluation of diffusivity B -- 4.1.5 Wiener process approximation -- 4.1.6 Probability density functions of ray parameters -- 4.1.6.1 Rays starting from a small area in the phase space -- 4.1.6.2 Averaging over ray starting parameters -- 4.1.6.3 Rays escaping a point source -- 4.1.7 Coarse-grained Wigner function -- 4.1.7.1 Ray-based description of the Wigner function -- 4.1.7.2 Evaluation of the coarse-grained Wigner function in the Wiener process approximation -- 4.1.8 Specific Poincaré map for a randomlyinhomogeneous waveguide -- 4.2 Travel Times of Chaotic Rays -- 4.2.1 Timefront in a randomly inhomogeneous waveguide -- 4.2.2 Travel time differences -- 4.2.2.1 Two rays in a range-independent waveguide -- 4.2.2.2 Ray in a range-independent waveguide and ray in a rangedependent waveguide -- 4.2.3 Statistics of ray travel times -- 4.2.3.1 Variations of ray travel times caused by internal waves -- 4.2.3.2 Spread and bias of fuzzy segments -- 4.2.3.3 Pulse signal at the observation point -- 4.2.3.4 Stability of the timefront and the Fermat's principle -- 4.2.3.5 Travel time as a function of launch angle -- 4.3 Modal Structure of the Sound Field in a Waveguide with RandomInhomogeneities -- 4.3.1 Redistribution of acoustic energy between normal modes under conditions of ray chaos -- 4.3.2 Transient wave field -- 4.3.2.1 Arrival time of an instantaneous frequency.

4.3.2.2 Mode pulses in a range-independent waveguide -- 4.3.2.3 Mode pulses in the presence of internal waves -- 4.3.2.4 Bias and spread of a mode pulse -- 4.4 Wave Beam in an Ocean Acoustic Waveguide -- 4.4.1 Ray-based description of a wave beam -- 4.4.1.1 Directivity pattern in a free space -- 4.4.1.2 Ray-based description of the wave field excited by a vertical antenna in a waveguide -- 4.4.1.3 Applicability conditions of the stationary phase technique -- 4.4.1.4 A weakly divergent beam -- 4.4.2 Wave beam and its modal structure in the presence of randominternal waves -- 4.5 Arrival Times of Sound Pulses in the Presence of Internal Waves and a Mesoscale Inhomogeneity -- 4.5.1 Variation of the timefront in the presence of synoptic eddy -- 4.5.2 The use of a vertical receiving array for measuring travel time delays -- 4.6 Summary -- 5. Glossary of Some Concepts and Notations in Hamiltonian Chaos Theory -- Bernoulli Shift -- Bifurcation -- Cantorus -- Dynamical Trap -- Fractal -- Hamiltonian Chaos -- Hamiltonian Dynamics -- Heteroclinic (Homoclinic) Structure -- Horseshoe Mapping -- Invariant Torus -- Island of Stability -- Kolmogorov-Arnold-Moser Theorem and KAM Torus -- Lyapunov Exponent -- Manifold -- Measure in Dynamical Systems -- Melnikov's Method -- Nonlinear Resonance -- Phase Space -- Poincaré Map -- Separatrix -- Stable and Unstable Motion -- Stability Points -- Trajectories -- Appendix A Models of a Waveguide -- A.1 CanonicalMunk Profile -- A.2 Linear Profile -- A.3 Bilinear Profile -- A.4 Biexponential Profile -- Appendix B Derivation of Ray Equations -- Appendix C Solution of the Transport Equation -- Appendix D Stationary Phase Technique -- Bibliography -- Index.
Abstract:
A systematic study of chaotic ray dynamics in underwater acoustic waveguides began in the mid-1990s when it was realized that this factor plays a crucial role in long-range sound propagation in the ocean. The phenomenon of ray chaos and its manifestation at a finite wavelength - wave chaos - have been investigated by combining methods from the theory of wave propagation and the theory of dynamical and quantum chaos. This book is the first monograph summarizing results obtained in this field. Emphasis is made on the exploration of ray and modal structures of the wave field in an idealized environmental model with periodic range dependence and in a more realistic model with sound speed fluctuations induced by random internal waves. The book is intended for acousticians investigating the long-range sound transmission through the fluctuating ocean and also for researchers studying waveguide propagation in other media. It will be of major interest to scientists working in the field of dynamical and quantum chaos. Sample Chapter(s). Chapter 1: Ray and Wave Propagation (4,024 KB). Contents: Ray and Wave Propagation; Ray Chaos; Wave Chaos; Chaotic Phenomena in Random Environment; Glossary of Some Concepts and Notations in Hamiltonian Chaos Theory. Readership: Physicists, oceanographers, applied mathematicians, and non-experts interested in problems of ray and wave chaos.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: