Cover image for Geometric Formulation of Classical and Quantum Mechanics.
Geometric Formulation of Classical and Quantum Mechanics.
Title:
Geometric Formulation of Classical and Quantum Mechanics.
Author:
Giachetta, Giovanni.
ISBN:
9789814313735
Personal Author:
Physical Description:
1 online resource (400 pages)
Contents:
Contents -- Preface -- Introduction -- 1. Dynamic equations -- 1.1 Preliminary. Fibre bundles over R -- 1.2 Autonomous dynamic equations -- 1.3 Dynamic equations -- 1.4 Dynamic connections -- 1.5 Non-relativistic geodesic equations -- 1.6 Reference frames -- 1.7 Free motion equations -- 1.8 Relative acceleration -- 1.9 Newtonian systems -- 1.10 Integrals of motion -- 2. Lagrangian mechanics -- 2.1 Lagrangian formalism on Q ! R -- 2.2 Cartan and Hamilton-De Donder equations -- 2.3 Quadratic Lagrangians -- 2.4 Lagrangian and Newtonian systems -- 2.5 Lagrangian conservation laws -- 2.5.1 Generalized vector fields -- 2.5.2 First Noether theorem -- 2.5.3 Noether conservation laws -- 2.5.4 Energy conservation laws -- 2.6 Gauge symmetries -- 3. Hamiltonian mechanics -- 3.1 Geometry of Poisson manifolds -- 3.1.1 Symplectic manifolds -- 3.1.2 Presymplectic manifolds -- 3.1.3 Poisson manifolds -- 3.1.4 Lichnerowicz-Poisson cohomology -- 3.1.5 Symplectic foliations -- 3.1.6 Group action on Poisson manifolds -- 3.2 Autonomous Hamiltonian systems -- 3.2.1 Poisson Hamiltonian systems -- 3.2.2 Symplectic Hamiltonian systems -- 3.2.3 Presymplectic Hamiltonian systems -- 3.3 Hamiltonian formalism on Q ! R -- 3.4 Homogeneous Hamiltonian formalism -- 3.5 Lagrangian form of Hamiltonian formalism -- 3.6 Associated Lagrangian and Hamiltonian systems -- 3.7 Quadratic Lagrangian and Hamiltonian systems -- 3.8 Hamiltonian conservation laws -- 3.9 Time-reparametrized mechanics -- 4. Algebraic quantization -- 4.1 GNS construction -- 4.1.1 Involutive algebras -- 4.1.2 Hilbert spaces -- 4.1.3 Operators in Hilbert spaces -- 4.1.4 Representations of involutive algebras -- 4.1.5 GNS representation -- 4.1.6 Unbounded operators -- 4.2 Automorphisms of quantum systems -- 4.3 Banach and Hilbert manifolds -- 4.3.1 Real Banach spaces -- 4.3.2 Banach manifolds.

4.3.3 Banach vector bundles -- 4.3.4 Hilbert manifolds -- 4.3.5 Projective Hilbert space -- 4.4 Hilbert and C -algebra bundles -- 4.5 Connections on Hilbert and C -algebra bundles -- 4.6 Instantwise quantization -- 5. Geometric quantization -- 5.1 Geometric quantization of symplectic manifolds -- 5.2 Geometric quantization of a cotangent bundle -- 5.3 Leafwise geometric quantization -- 5.3.1 Prequantization -- 5.3.2 Polarization -- 5.3.3 Quantization -- 5.4 Quantization of non-relativistic mechanics -- 5.4.1 Prequantization of T Q and V Q -- 5.4.2 Quantization of T Q and V Q -- 5.4.3 Instantwise quantization of V Q -- 5.4.4 Quantization of the evolution equation -- 5.5 Quantization with respect to di erent reference frames -- 6. Constraint Hamiltonian systems -- 6.1 Autonomous Hamiltonian systems with constraints -- 6.2 Dirac constraints -- 6.3 Time-dependent constraints -- 6.4 Lagrangian constraints -- 6.5 Geometric quantization of constraint systems -- 7. Integrable Hamiltonian systems -- 7.1 Partially integrable systems with non-compact invariant submanifolds -- 7.1.1 Partially integrable systems on a Poisson manifold -- 7.1.2 Bi-Hamiltonian partially integrable systems -- 7.1.3 Partial action-angle coordinates -- 7.1.4 Partially integrable system on a symplectic manifold -- 7.1.5 Global partially integrable systems -- 7.2 KAM theorem for partially integrable systems -- 7.3 Superintegrable systems with non-compact invariant submanifolds -- 7.4 Globally superintegrable systems -- 7.5 Superintegrable Hamiltonian systems -- 7.6 Example. Global Kepler system -- 7.7 Non-autonomous integrable systems -- 7.8 Quantization of superintegrable systems -- 8. Jacobi fields -- 8.1 The vertical extension of Lagrangian mechanics -- 8.2 The vertical extension of Hamiltonian mechanics -- 8.3 Jacobi fields of completely integrable systems.

9. Mechanics with time-dependent parameters -- 9.1 Lagrangian mechanics with parameters -- 9.2 Hamiltonian mechanics with parameters -- 9.3 Quantum mechanics with classical parameters -- 9.4 Berry geometric factor -- 9.5 Non-adiabatic holonomy operator -- 10. Relativistic mechanics -- 10.1 Jets of submanifolds -- 10.2 Lagrangian relativistic mechanics -- 10.3 Relativistic geodesic equations -- 10.4 Hamiltonian relativistic mechanics -- 10.5 Geometric quantization of relativistic mechanics -- 11. Appendices -- 11.1 Commutative algebra -- 11.2 Geometry of bre bundles -- 11.2.1 Fibred manifolds -- 11.2.2 Fibre bundles -- 11.2.3 Vector bundles -- 11.2.4 Affine bundles -- 11.2.5 Vector fields -- 11.2.6 Multivector fields -- 11.2.7 Differential forms -- 11.2.8 Distributions and foliations -- 11.2.9 Differential geometry of Lie groups -- 11.3 Jet manifolds -- 11.3.1 First order jet manifolds -- 11.3.2 Second order jet manifolds -- 11.3.3 Higher order jet manifolds -- 11.3.4 Differential operators and differential equations -- 11.4 Connections on fibre bundles -- 11.4.1 Connections -- 11.4.2 Flat connections -- 11.4.3 Linear connections -- 11.4.4 Composite connections -- 11.5 Differential operators and connections on modules -- 11.6 Differential calculus over a commutative ring -- 11.7 Infinite-dimensional topological vector spaces -- Bibliography -- Index.
Abstract:
The geometric formulation of autonomous Hamiltonian mechanics in the terms of symplectic and Poisson manifolds is generally accepted. The literature on this subject is extensive. The present book provides the geometric formulation of non-autonomous mechanics in a general setting of time-dependent coordinate and reference frame transformations. This formulation of mechanics as like as that of classical field theory lies in the framework of general theory of dynamic systems, and Lagrangian and Hamiltonian formalisms on fiber bundles. The reader will find a strict mathematical exposition of non-autonomous dynamic systems, Lagrangian and Hamiltonian non-relativistic mechanics, relativistic mechanics, quantum non-autonomous mechanics, together with a number of advanced models - superintegrable systems, non-autonomous constrained systems, theory of Jacobi fields, mechanical systems with time-dependent parameters, non-adiabatic Berry phase theory, instantwise quantization, and quantization relative to different reference frames.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: