Cover image for Methods in Bioengineering : Nanoscale Bioengineering and Nanomedicine.
Methods in Bioengineering : Nanoscale Bioengineering and Nanomedicine.
Title:
Methods in Bioengineering : Nanoscale Bioengineering and Nanomedicine.
Author:
Rege, Kaushal.
ISBN:
9781596934115
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (364 pages)
Series:
Methods in Bioengineering
Contents:
Methods in Bioengineering: Nanoscale Bioengineering and Nanomedicine -- Contents -- Preface -- Chapter 1 Preparation and Characterization of Carbon Nanotube-Protein Conjugates -- 1.1 Introduction -- 1.2 Materials -- 1.3 Methods -- 1.3.1 Physical Adsorption of Proteins on Carbon Nanotubes -- 1.3.2 Protein Assisted Solubilization of Carbon Nanotubes -- 1.3.3 Covalent Attachment of Proteins onto Carbon Nanotubes -- 1.4 Data Acquisition, Anticipated Results, and Interpretation of Data -- 1.4.1 Characterization of Proteins Physically Adsorbed onto Carbon Nanotubes -- 1.4.2 Characterization of Protein-Solubilized Carbon Nanotubes -- 1.4.3 Characterization of Covalently Attached Carbon Nanotube-Protein Conjugates -- 1.5 Discussion and Commentary -- 1.6 Applications Notes -- 1.7 Summary Points -- Acknowledgments -- References -- Chapter 2 Peptide-Nanoparticle Assemblies -- 2.1 Introduction -- 2.2 Materials -- 2.3 Methods -- 2.3.1 Coil-Coil Peptide Mediated NP Assembly -- 2.3.2 Synthesis of Hybrid Structures Using Multifunctional Peptides -- 2.4 Assembly Mediated by Metal Ion-Peptide Recognition -- 2.5 Peptides as Antibody Epitopes for Nanoparticle Assembly -- 2.6 DATA Acquisition, Anticipated Results, and Interpretation -- 2.7 Discussion and Commentary -- 2.8 Application Notes -- 2.9 Summary Points -- Acknowledgments -- References -- Chapter 3 Nanoparticle-Enzyme Hybrids as Bioactive Materials -- 3.1 Introduction -- 3.2 Materials -- 3.3 Methods -- 3.3.1 Enzyme-Attached Polystyrene Nanoparticles -- 3.3.2 Polyacrylamide Hydrogel Nanoparticles for Entrapment of Enzymes -- 3.3.3 Magnetic Nanoparticles with Porous Silica Coating for Enzyme Attachment -- 3.3.4 Enzyme Loading and Activity Assay -- 3.4 Results -- 3.4.1 Polystyrene-Enzyme Hybrid Nanoparticles -- 3.4.2 Polyacrylamide Hydrogel Nanoparticles with Entrapped Enzymes.

3.4.3 Magnetic Nanoparticles for Enzyme Attachment -- 3.5 Discussion and Commentary -- 3.6 Troubleshooting -- 3.7 Application Notes -- 3.8 Summary Points -- Acknowledgments -- References -- Chapter 4 Self-Assembled QD-Protein Bioconjugates and Their Use in Fluorescence Resonance Energy Transfer -- 4.1 Introduction -- 4.2 Materials -- 4.2.1 Reagents -- 4.2.2 Equipment -- 4.3 Methods -- 4.3.1 Quantum Dot Synthesis -- 4.3.2 Surface Ligand Exchange -- 4.3.3 Biomolecule Conjugation -- 4.3.4 Fluorescence Measurements -- 4.4 Data Analysis and Interpretation -- 4.4.1 Calculating Donor-Acceptor Distances -- 4.4.2 Calculating Reaction Rates of Surface-Bound Substrates -- 4.5 Summary Points -- 4.6 Conclusions -- References -- Annotated References -- Chapter 5 Tracking Single Biomolecules in Live Cells Using Quantum Dot Nanoparticles -- 5.1 Introduction -- 5.2 Materials -- 5.2.1 Reagents -- 5.2.2 Imaging Equipment -- 5.3 Methods -- 5.3.1 Forming QD Bioconjugates -- 5.3.2 Treating Cells with QD Bioconjugates -- 5.4 Data Acquisition, Anticipated Results, and Interpretation -- 5.4.1 Imaging QD-Bound Complexes in Cells -- 5.4.2 Analysis of the Real-Time QD Dynamics -- 5.5 Discussion and Commentary -- References -- Chapter 6 Nanoparticles as Biodynamic Substrates for Engineering Cell Fates -- 6.1 Introduction -- 6.2 Experimental Design -- 6.3 Materials -- 6.3.1 Cell Culture, Fixing, Staining, and Analysis Reagents -- 6.3.2 Nanoparticle Fabrication and Functionalization -- 6.3.3 Microscale Plasma Initiated Patterning -- 6.4 Methods -- 6.4.1 Albumin Nanoparticle Fabrication -- 6.4.2 Albumin Nanoparticle Functionalization -- 6.4.3 Albumin Nanoparticle Pattern Creation-Microscale Plasma Initiated Patterning (uPIP) -- 6.4.4 Cell Culture -- 6.4.5 Keratinocyte Morphology and Migration -- 6.4.6 Fibroblast Extracellular Matrix Assembly -- 6.4.7 Cell Attachment Assay.

6.5 Results -- 6.5.1 Enhanced Cell Migration -- 6.5.2 Enhanced Extracellular Matrix Assembly -- 6.6 Discussion of Pitfalls -- 6.6.1 Spatial Guidance of Cell Attachment-Microscale Plasma Initiated Patterning -- 6.6.2 Three-Dimensional Presentation of Albumin Nanoparticles -- 6.7 Summary Points -- Acknowledgments -- References -- Chapter 7 Magnetic Cell Separation to Enrich for Rare Cells -- 7.1 Introduction -- 7.1.1 Principle -- 7.1.2 Examples of Cell Magnetic Separation Applications -- 7.2 Materials and Methods -- 7.2.1 Enrichment Process -- 7.2.2 Red Cell Lysis Step -- 7.2.3 Immunomagnetic Labeling -- 7.2.4 Magnetic Cell Separation Step -- 7.3 Data Acquisition, Results, and Interpretation -- 7.4 Discussion and Commentary -- 7.5 Summary Points to Obtain High-Performance, Magnetic Cell Separations -- Acknowledgments -- References -- Chapter 8 Magnetic Nanoparticles for Drug Delivery -- 8.1 Introduction -- 8.2 Experimental Design -- 8.3 Materials -- 8.3.1 Reagents -- 8.3.2 Facilities and Equipment -- 8.4 Methods -- 8.4.1 Synthesis of Magnetic Nanoparticles -- 8.4.2 Physical Characterization of Magnetic Nanoparticles -- 8.4.3 Conversion of DOX HCl -- 8.4.4 Drug Loading and Release Kinetics -- 8.4.5 Kinetics of DOX Release from Magnetic Nanoparticles -- 8.4.6 Antiproliferative Activity of Doxorubicin Loaded Magnetic Nanoparticles on MCF-7 Cells -- 8.4.7 Antiproliferative Activity of Doxorubicin Loaded MagneticNanoparticles on MCF-7 Cells in the Presence of a Magnetic Field -- 8.5 Data Acquisition, Anticipated Results, and Interpretation -- 8.6 Discussion and Commentary -- 8.7 Application Notes -- 8.8 Summary Points -- Acknowledgments -- References -- Chapter 9 Imaging and Therapy of Atherosclerotic Lesions with Theranostic Nanoparticles -- 9.1 Introduction -- 9.2 Experimental Design -- 9.3 Materials -- 9.3.1 Reagents -- 9.3.2 Facilities/Equipment.

9.3.3 Animal Model -- 9.3.4 Alternate Reagents and Equipment -- 9.4 Methods -- 9.4.1 Synthesis of Theranostic Nanoparticles -- 9.4.2 Intravital Fluorescence Microscopy -- 9.4.3 Light-Based Therapy -- 9.5 Data Acquisition, Anticipated Results, and Interpretation -- 9.5.1 Characterization of Theranostic Nanoparticles -- 9.5.2 Animal Experimentation -- 9.5.3 Intravital Fluorescence Microscopy -- 9.5.4 Statistical Analyses -- 9.5.5 Anticipated Results -- 9.6 Discussion and Commentary -- 9.7 Summary Points -- Acknowledgments -- References -- Chapter 10 Biomedical Applications of Metal Nanoshells -- 10.1 Introduction -- 10.1.1 Biomedical Applications of Metal Nanoshells -- 10.1.2 Nanoshells for Combined Optical Contrast and Therapeutic Application -- 10.2 Experimental Design -- 10.3 Materials -- 10.3.1 Nanoparticle Production -- 10.3.2 Protein Conjugation to Nanoshells Surface -- 10.3.3 Cell Culture -- 10.3.4 In Vitro Assays -- 10.4 Methods -- 10.4.1 Fabrication of Gold/Silica Core Nanoshells -- 10.4.2 Nanoshells for Combined Imaging and Therapy In Vivo -- 10.4.3 Passivation of Nanoshells with PEG -- 10.4.4 Conjugation of Biomolecules to Nanoshells -- 10.4.5 Quantification of Antibodies on Nanoshells -- 10.5 Results -- 10.5.1 Gold/Silica Nanoshells Allow Both Imaging Contrast Increase and Therapeutic Benefit -- 10.5.2 Evaluation of Antibody Concentration per Nanoshell -- 10.6 Discussion of Pitfalls -- 10.7 Statistical Analysis -- Acknowledgments -- References -- Chapter 11 Environmentally Responsive Multifunctional Liposomes -- 11.1 Introduction -- 11.1.1 Cis-Aconityl Linkage -- 11.1.2 Trityl Linkage -- 11.1.3 Acetal Linkage -- 11.1.4 Polyketal Linkage -- 11.1.5 Vinyl Ether Linkage -- 11.1.6 Hydrazone Linkage -- 11.1.7 Poly(Ortho-Esters) -- 11.1.8 Thiopropionates -- 11.2 Materials -- 11.2.1 Chemicals -- 11.2.2 Syntheses.

11.2.3 Preparation of the TATp-Bearing, Rhodamine-Labeled Liposomal Formulations -- 11.2.4 Preparation of the TAtp-Bearing, Rhodamine Labeled, pGFP Complexed Liposomal Formulations -- 11.3 Methods -- 11.3.1 Synthesis of Hydrazone-Based mPEG-HZ-PE Conjugates [63, 66] -- 11.3.2 Synthesis of PE-PEG1000-TATp Conjugate [66] -- 11.3.3 In Vitro pH-Dependant Degradation of PEG-HZ-PE Conjugates -- 11.3.4 Avidin-Biotin Affinity Chromatography -- 11.3.5 In Vitro Cell-Culture Study -- 11.3.6 In Vivo Study -- 11.3.7 In Vivo Transfection with pGFP -- 11.4 Discussion and Commentary -- 11.4.1 Synthesis of Hydrazone-Based mPEG-HZ-PE Conjugates -- 11.4.2 Synthesis of PE-PEG1000-TATp Conjugate -- 11.4.3 In Vitro pH-Dependant Degradation of PEG-HZ-PE Conjugates -- 11.4.4 Avidin-Biotin Affinity Chromatography -- 11.4.5 In Vitro Cell Culture Study -- 11.4.6 In Vivo Study -- 11.4.7 In Vivo pGFP Transfection Experiment -- 11.5 Conclusion -- 11.6 Summary Points -- Acknowledgments -- References -- Chapter 12 Biodegradable, Targeted Polymeric Nanoparticle Drug Delivery Formulation for Cancer Therapy -- 12.1 Introduction -- 12.2 Materials -- 12.2.1 Polymer Synthesis of PLA-PEG and PLGA-PEG -- 12.2.2 Nanoparticle Formation -- 12.2.3 Ligand Conjugation -- 12.2.4 Quantification of Drug Encapsulation -- 12.2.5 Release Experiments -- 12.2.6 Postformulation Treatment -- 12.2.7 Cell Binding and Uptake Experiments -- 12.2.8 Cytotoxicity Experiments -- 12.3 Methods -- 12.3.1 Polymer Synthesis of PLA-PEG and PLGA-PEG -- 12.3.2 Nanoparticle Formation -- 12.3.3 Conjugation of Targeting Ligand -- 12.3.4 Quantification of Drug Encapsulation -- 12.3.5 Drug Release Studies -- 12.3.6 Postformulation Treatment -- 12.3.7 In Vitro Experiments: Cell Binding and Uptake Studies -- 12.3.8 In Vitro Experiments: Cytotoxicity Studies -- 12.4 Data Acquisition, Results, and Interpretation.

12.4.1 Polymer Characterization.
Abstract:
Filling a critical gap in the current literature, this new resource presents practical, step-by-step methods to help you synthesize, characterize, biofunctionalize and apply the nanomaterial that is most suitable for handling a given nanoscale bioengineering problem. Written and presented by leading scientists and engineers in their respective fields, the authors offer a clear and detailed understanding of how to carry out nanoparticle functionalization with biomolecules (including enzymes), nanoparticle analysis and characterization, in vitro evaluation of nanoparticles using different cell lines and in vitro evaluation of nanoparticles as therapeutics and imaging agents.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: