Cover image for Beyond the Quantum.
Beyond the Quantum.
Title:
Beyond the Quantum.
Author:
Nieuwenhuizen, Theo M.
ISBN:
9789812771186
Personal Author:
Physical Description:
1 online resource (400 pages)
Contents:
CONTENTS -- Preface -- Memorial -- Part A Introductions -- The Mathematical Basis for Deterministic Quantum Mechanics G. 't Hooft -- 1. Introduction -- 2. Variables, Beables and Changeables -- 3. The Harmonic Oscillator -- 4. Two (or more) Harmonic Oscillators -- 5. Energy and Hamiltonian -- 6. Interactions -- 7. Limit Cycles -- 8. Discussion -- Appendix A. -- 9. The random deterministic model -- References -- What Did We Learn from Quantum Gravity? A. Ashtekar -- 1. Introduction -- 2. Quantum Riemannian Geometry -- 3. Application: Homogeneous Isotropic Cosmology -- 4. Discussion -- Acknowledgments -- References -- Bose-Einstein Condensates and EPR Quantum Non-Locality F. Lalo e -- 1. EPR Argument and Its Refutation by Bohr -- 2. Detecting the Transverse Direction of Spins -- calculation -- 3. Physical Discussion -- 3.1. Role of the Integral -- 3.2. Small and Big Condensates -- Ampli cation During Measurement -- 3.3. EPR Non-locality with Fock States -- 4. Possible Objections -- 5. Conclusion -- Acknowledgments -- References -- The Quantum Measurement Process: Lessons from an Exactly Solvable Model A. E. Allahverdyan, R. Balian and Th. M. Nieuwenhuizen -- 1. Introduction -- 2. The model and its solution -- 2.1. The Hamiltonian -- 2.2. Disappearance of Schr odinger cats -- 2.2.1. Dephasing -- 2.2.2. Decoherence -- 2.3. Registration of the measurement -- 3. Microscopic versus macroscopic aspects of quantum measurement -- 4. Measurement, a process of quantum statistical mechanics -- 5. Irreversibility -- 6. Meaning of von Neumann's reduction and of Born's rule -- 7. Relation to the pre-measurement -- 8. Statistical interpretation of quantum mechanics -- Acknowledgement -- References -- Part B Quantum Mechanics and Quantum Information -- POVMs: A Small but Important Step Beyond Standard Quantum Mechanics W. M. de Muynck -- 1. Introduction.

2. Complementarity -- 2.1. The Summhammer, Rauch, Tuppinger experiment -- 2.2. The Martens inequality -- 2.3. Martens inequality versus Heisenberg uncertainty relation -- 3. Bell Inequalities -- 3.1. Generalized Aspect experiment -- 3.2. Complementarity and nonlocality as alternative explanations of violation of the Bell inequalities -- References -- State Reduction by Measurements with a Null Result G. Nienhuis -- 1. Introduction -- 2. Macroscopic Fluorescence Switching -- 2.1. Evolution of density matrix -- 2.2. Intensity correlation and waiting-time distribution -- 2.3. Single histories -- 3. Spontaneous Decay as a Quantum Trajectory -- 4. Discussion -- References -- Solving Open Questions in the Bose{Einstein Condensation of an Ideal Gas via a Hybrid Mixture of Laser and Statistical Physics M. Kim, A. Svidzinsky and M. O. Scully -- 1. Introduction -- 2. Laser Master Equation Analysis of BEC Statistics -- 2.1. Low temperature approximation -- 2.2. Quasithermal approximation -- 3. A Very Accurate Hybrid Approach -- 3.1. Cumulants of BEC uctuation for an ideal Bose gas -- 3.2. Hybrid approach to condensate uctuations -- Acknowledgments -- Appendix A. Mean number of condensate particles: cusp vs smooth crossover -- References -- Twin-Photon Light Scattering and Causality G. Puentes, A. Aiello and J. P. Woerdman -- 1. Introduction -- 2. Our experiments -- 3. Causality condition -- 4. Scattering processes as trace-preserving and non-trace-preserving quantum maps -- 5. Non-trace-preserving maps and the causality condition -- 6. Conclusion -- Acknowledgments -- References -- Simultaneous Measurement of Non-Commuting Observables G. Aquino and B. Mehmani -- 1. Introduction -- 2. Statement of the Problem -- 3. Spin-1 Assistant in a Known Pure State -- 4. Assistant System as a Coherent State of Light -- 5. Conclusions -- Acknowledgments -- References.

Quantum Decoherence and Gravitational Waves M. T. Jaekel, B. Lamine, A. Lambrecht, S. Reynaud and P. Maia Neto -- 1. Introduction -- 2. Gravitational Environment -- 3. Quantum Decoherence of Atomic Interferometers -- 4. Quantum Decoherence of Planetary Systems -- 5. Gravitational Quantum Decoherence -- References -- Role of Various Entropies in the Black Hole Information Loss Problem Th. M. Nieuwenhuizen and I. V. Volovich -- 1. Introduction -- 2. Different Kinds of Entropies -- 3. On the Black Hole Information Paradox -- 4. Information Loss in Gases -- 5. Information Loss in Quantum Gravity -- 6. Conclusions -- Acknowledgments -- References -- Quantum and Super-Quantum Correlations G. S. Jaeger -- 1. Introduction -- 2. Quantum Correlations -- 3. Super{Quantum Correlations -- 4. The Collapse of Super{Quantum Complexity Theory -- 5. Beyond the Quantum -- 6. The Simulation of Quantum Correlations -- References -- Part C Long Distance Correlations and Bell Inequalities -- Understanding Long{Distance Quantum Correlations L. Marchildon -- 1. Introduction -- 2. Long-Distance Correlations -- 3. Copenhagen and Related Views -- 4. Bohmian Mechanics -- 5. The Transactional Interpretation -- 6. Extended Parameter Space -- 7. Summary and Conclusion -- Acknowledgments -- References -- Connection of Probability Models to EPR Experiments: Probability Spaces and Bell's Theorem K. Hess and W. Philipp -- 1. Introduction -- 2. Random Variables, EPR Experiments and the Theorem of Bell -- 3. Connection of Quantum Mechanics to Experiments -- 4. Connection of Kolmogorov Type Models to Experiments -- 5. Connecting Quantum Mechanics and Kolmogorov's Probability Theory -- 6. Probability Spaces, Time Evolution, Non-Commuting Operators, Closed Loops -- 6.1. Different probability spaces and unitary time evolution -- 6.2. Probability spaces, joint distributions and commutativity.

6.3. Probability spaces and EPR experiments -- 7. Probability Spaces and Relativity: Physics and the Sample Space -- 8. Discussion and Conclusions -- References -- Fair Sampling vs No-Signalling Principle in EPR Experiments G. Adenier and A. Yu. Khrennikov -- 1. Introduction -- 2. Channel efficiencies -- 3. Normalizing using the single counts -- 4. Experimental Results -- 5. Interpretation -- 6. Conclusion -- Acknowledgments -- References -- Part D Mathematical Foundations -- Where the Mathematical Structure of Quantum Mechanics Comes From G. M. D'Ariano -- 1. Introduction -- 2. The Postulates -- 3. The Statistical and Dynamical Structure -- 4. Banach Structure -- 5. Observables -- 6. Dimensionality Theorems -- 7. The Complex Hilbert Space Structure for Finite Dimensions -- 8. Infinite Dimension: the C -Algebra of Transformations -- References -- Phase Space Description of Quantum Mechanics and Non-Commutative Geometry: Wigner{Moyal and Bohm in a Wider Context B. J. Hiley -- 1. Introduction -- 2. The Moyal Approach -- 3. Relation to the Bohm Approach -- 4. The Star-Product and Its Properties -- 5. Time Dependent Equations in the Moyal Approach -- 6. The Operator Formalism -- 7. Conclusion -- References -- Quantum Mechanics as Simple Algorithm for Approximation of Classical Integrals A. Yu. Khrennikov -- 1. Introduction -- 2. Finite Dimensional Quantum Mechanics -- 2.1. Quantum mechanics over real numbers -- 2.2. Quantum mechanics over complex numbers -- 3. Illustration for the von Neumann Trace{Class Formula in the One Dimensional Case -- 4. Finite Dimensional Quantum Mechanics Over Reals as an Approximative Theory -- 5. Prequantum Phase Space { the Two Dimensional Case -- 6. Prequantum Phase Space for Finite Dimensional Quantum Mechanics -- References.

Noncommutative Quantum Mechanics Viewed from Feynman Formalism J. Lages, A. Berard, H. Mohrbach, Y. Grandati and P. Gosselin -- 1. Introduction -- 2. Mathematical Foundations of Feynman's Formalism -- 3. Maxwell's Equations -- 4. SO(3) Algebra and Poincar e Momentum -- 5. Noncommutative Quantum Mechanics -- 5.1. Jacobi Identities -- 5.2. Position Transformation -- 5.3. Field Properties -- 5.4. Angular Momentum -- 5.5. Physical Realization -- 6. Conclusion -- References -- Beyond the Quantum in Snyder Space J. F. S. van Huele and M. K. Transtrum -- 1. Why Go Beyond the Quantum? -- 2. Go Beyond What Quantum? -- 3. Snyder's Goes Beyond the Quantum -- 4. Snyder Space Essentials -- 5. Snyder Space Solutions -- 6. Snyder Space Overlapping Beyond the Quantum -- 7. Lessons Learned from Snyder Space Beyond the Quantum -- References -- Part E Stochastic Electrodynamics -- Some Quantum Experiments from the Point of View of Stochastic Electrodynamics V. Spi cka, J. J. Mare s, P. Hub k and J. Kri sto k -- 1. Introduction -- 1.1. Contents -- 2. Development of concepts: QED and SED -- 2.1. Notes to history of quantum mechanics, QED and SED -- 2.1.1. Essential problems of QED: in nities and the structure of vacuum -- 2.1.2. Summary of the early development of quantum mechanics and QED -- 2.1.3. Randomness and discussion of Earnshaw's theorem: a way to SED -- 2.2. Stochastic approach to quantum phenomena -- 2.2.1. Stochastic quantum mechanics -- 2.2.2. Stochastic electrodynamics -- 2.2.3. Quantum phenomena explained by SED -- 3. Black-body radiation spectrum and stochastic electrodynamics -- 3.1. Black-body radiation spectrum and quantum mechanics -- 3.2. Zero-point radiation -- 3.2.1. Lorentz invariance of ZPR spectral distribution -- 3.2.2. Divergence of ZPR spectrum and natural cut-off -- 3.2.3. Black-body radiation spectrum in SED.

3.3. Measurement of black-body radiation and ZPR spectrum.
Abstract:
Already Einstein could never see quantum mechanics as a complete theory. Nowadays, many researchers, including 't Hooft, view quantum mechanics as a statistical description of some underlying reality. The workshop Beyond the Quantum, organized in Spring 2006 at the Lorentz Center in Leiden, The Netherlands, was one of the first meetings completely devoted to physics that may need an explanation beyond quantum mechanics. A broad variety of subjects was covered. The present book reflects this. Sample Chapter(s). Chapter 1: The Mathematical Basis for Deterministic Quantum Mechanics (267 KB). Contents: Introductions: The Mathematical Basis for Deterministic Quantum Mechanics (G 't Hooft); What Did We Learn from Quantum Gravity? (A Ashtekar); Bose-Einstein Condensates and EPR Quantum Non-Locality (F Laloë); The Quantum Measurement Process: Lessons from an Exactly Solvable Model (A E Allahverdyan et al.); Quantum Mechanics and Quantum Information: POVMs: A Small but Important Step Beyond Standard Quantum Mechanics (W M de Muynck); State Reduction by Measurements with a Null Result (G Nienhuis); Solving Open Questions in the Bose-Einstein Condensation of an Ideal Gas via a Hybrid Mixture of Laser and Statistical Physics (M Kim et al.); Long Distance Correlations and Bell Inequalities: Fair Sampling vs No-Signalling Principle in EPR Experiments (G Adenier & A Yu Khrennikov); Mathematical Foundations: Where the Mathematical Structure of Quantum Mechanics Comes From (G M D'Ariano); Phase Space Description of Quantum Mechanics and Non-Commutative Geometry: Wigner-Moyal and Bohm in a Wider Context (B J Hiley); Quantum Mechanics as Simple Algorithm for Approximation of Classical Integrals (A Yu Khrennikov); Stochastic Electrodynamics: Some Quantum Experiments from the Point of View of Stochastic Electrodynamics (V Špička et al.); Models for the Electron:

Rotating Hopf-Kinks: Oscillators in the Sense of de Broglie (U Enz); The Electron and the Neutrino as Solitos in Classical Electromagnetism (Th M Nieuwenhuizen); Philosophical Considerations; Round Table; and other papers. Readership: Postgraduates and researchers in quantum physics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: