Cover image for Biomaterials.
Biomaterials.
Title:
Biomaterials.
Author:
Migonney, Véronique.
ISBN:
9781119043683
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (249 pages)
Contents:
Cover -- Title Page -- Copyright -- Contents -- Introduction -- Chapter 1: History of Biomaterials -- 1.1. Introduction -- 1.2. The evolution of biomaterials: several generations -- 1.3. Was gold the first "biomaterial"? -- 1.4. The use of glass to replace eyes -- 1.5. Wood, leather, stainless steel to replace amputated limbs -- 1.6. Conclusions -- 1.7. Bibliography -- Chapter 2: Definitions -- 2.1. Introduction -- 2.2. Definitions of a "biomaterial" -- 2.2.1. Dictionary definitions -- 2.2.2. Definitions of biomaterials from expert scientists of the domain -- 2.2.3. Up-to-date definition of biomaterials -- 2.2.4. Extensions of the biomaterials field -- 2.3. Biomedical device -- 2.3.1. Introduction -- 2.3.2. Definition of a medical device -- 2.3.3. Classes of medical devices -- 2.4. Other definitions: implant, prosthesis, organ, graft, etc. -- 2.5. Tissue engineering, regenerative medicine, nanomedicine -- 2.5.1. Tissue engineering -- 2.5.2. Regenerative medicine -- 2.5.3. Nanomedicine -- 2.6. Bibliography -- Chapter 3: Materials Used in Biomaterial Applications -- 3.1. Introduction -- 3.2. Metals and alloys -- 3.2.1. Titanium and titanium-based alloys -- 3.2.2. Stainless steel -- 3.2.3. Cobalt-based alloys -- 3.2.4. Shape-memory alloys -- 3.2.5. Tantalum -- 3.2.6. Surface coating and finishing -- 3.3. Bioceramics -- 3.3.1. Nearly bioinert oxide-based ceramics -- 3.3.2. Carbon-based implants -- 3.3.3. Bioactive ceramics -- 3.3.4. Resorbable ceramics -- 3.3.5. Glass-ionomers -- 3.3.6. Surface processing of ceramic materials -- 3.4. Polymers -- 3.4.1. Non-degradable synthetic polymers -- 3.4.2. Synthetic and natural degradable polymers -- 3.4.2.1. Degradable polyesters -- 3.4.2.2. Other synthetic degradable polymers -- 3.4.2.3. Natural polymers -- 3.4.3. Biomedical elastomers -- 3.4.4. Shape-memory polymers.

3.4.5. Conjugated polymer-based biomaterials -- 3.4.6. Polymer surfaces -- 3.5. Conclusions -- 3.6. Bibliography -- Chapter 4: Biocompatibility and Norms -- 4.1. Introduction -- 4.2. Definitions of "biocompatibility" -- 4.2.1. Introduction to biocompatibility -- 4.2.2. History of the definitions -- 4.3. Discussion on biocompatibility -- 4.4. Host response -- 4.5. Biocompatibility - how can we evaluate it? -- 4.6. Infection, sterilization, prevention of infection -- 4.7. Norms and biocompatibility? -- 4.8. Conclusion -- 4.9. Bibliography -- Chapter 5: Bioactive Polymers and Surfaces: A Solution for Implant Devices -- 5.1. Introduction -- 5.2. History -- 5.3. Model "bioactive" polymers -- 5.3.1. Introduction -- 5.4. "Bioactive" prosthetic surfaces -- 5.4.1. Introduction -- 5.4.2. Concept and feasibility of the grafting of "bioactive" polymers onto prosthetic surfaces -- 5.4.2.1. Concept -- 5.4.3. Applications: (a) grafting of "bioactive" polymers onto LARS ligament prostheses and (b) grafting of "bioactive" polymers onto Ceraver total hip prostheses -- 5.4.3.1. Poly(ethylene terephtalate) (PET) ligament prostheses:grafting of a bioactive polymer and in vitro and in vivo evaluations -- 5.4.3.2. Titanium alloy TA6V hip prostheses: grafting of a bioactive polymer and in vitro and in vivo evaluations of the biological response -- 5.5. Bibliography -- Chapter 6: Functionalization of Biomaterials and Applications -- 6.1. Introduction -- 6.2. Applications -- 6.2.1. "Grafting to" on stainless steel surfaces for antibacterial and antiadhesion properties -- 6.2.2. Grafting of bioactive polymers onto titanium implants -- 6.2.3. Radical graft polymerization of bioactive polymers on poly(ethylene terephthalate) (PET) for anterior cruciate ligament applications -- 6.3. Bibliography -- Chapter 7: Biomaterial Structures for Anterior Cruciate Ligament Replacement.

7.1. Introduction -- 7.2. Off the shelf ligaments -- 7.2.1. Non-resorbable artificial ligaments -- 7.2.2. Resorbable artificial ligaments -- 7.2.3. Natural materials for ACL replacement -- 7.3. Tissue-engineered constructs -- 7.3.1. Cell sheet technology -- 7.3.2. Fibrous scaffolds -- 7.3.3. Knitted/braided scaffolds -- 7.4. Concluding remarks -- 7.5. Bibliography -- Chapter 8: Animal Models for Orthopedic Applications of Tissue Engineering -- 8.1. Introduction -- 8.2. Factors involved in choosing a model -- 8.2.1. Model relevance -- 8.2.2. Model objectivity and reproducibility -- 8.2.3. Ethical considerations -- 8.2.4. Financial considerations -- 8.2.5. Technical limitations -- 8.3. The good model for the good question research: decision-making approach -- 8.3.1. Evaluation of biocompatibility, degradation and functionality -- 8.3.2. Mechanistic studies -- 8.3.3. Proof of concept -- 8.4. Conclusions -- 8.5. Bibliography -- Chapter 9: Ceramic Materials for Dental Prostheses -- 9.1. The place of ceramics in modern prosthetic dentistry -- 9.2. Dental ceramics systems -- 9.3. Glass ceramics -- 9.3.1. Classical glass ceramics -- 9.3.2. Reinforced glass ceramics -- 9.4. Infiltrated ceramics -- 9.5. Polycrystalline ceramics -- 9.5.1. Alumina -- 9.5.2. Zirconia -- 9.6. Perspectives -- 9.7. Bibliography -- Chapter 10: Dental Adhesives -- 10.1. Introduction -- 10.2. The different adhesive systems -- 10.3. General principles of bonding to mineralized dental tissues -- 10.4. A word on dental bonding system composition -- 10.5. About the lifespan of dental bonding -- 10.6. Clinical illustration -- 10.7. Acknowledgments -- 10.8. Bibliography -- Chapter 11: Glass Ionomer Cements: Application in Pediatric Dentistry -- 11.1. Introduction -- 11.2. Resin-modified and high viscous glass ionomer cements -- 11.3. Dental adhesion and surface treatments.

11.4. Glass ionomers: application in pediatric dentistry -- 11.4.1. Indications -- 11.4.2. Longevity of restorative materials in primary teeth -- 11.4.3. Examples of clinical cases -- 11.5. Conclusion -- 11.6. Bibliography -- List of Authors -- Index.
Abstract:
Discovered in the 20th century, biomaterials have contributed to many of the incredible scientific and technological advancements made in recent decades. This book introduces and details the tenets of biomaterials, their relevance in a various fields, practical applications of their products, and potential advancements of the years to come. A comprehensive resource, the text covers the reasons that certain properties of biomaterials contribute to specific applications, and students and researchers will appreciate this exhaustive textbook.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Added Author:
Electronic Access:
Click to View
Holds: Copies: