Cover image for Twenty-Fourth Symposium on Naval Hydrodynamics.
Twenty-Fourth Symposium on Naval Hydrodynamics.
Title:
Twenty-Fourth Symposium on Naval Hydrodynamics.
Author:
Research, Office of Naval.
ISBN:
9780309593458
Personal Author:
Physical Description:
1 online resource (1018 pages)
Contents:
Twenty-Fourth Symposium on NAVAL HYDRODYNAMICS -- Twenty-Fourth Symposium on NAVAL HYDRODYNAMICS -- Copyright -- Foreword -- Contents -- Opening Remarks -- Microbubbles: Drag Reduction Mechanism and Applicability to Ships -- ABSTRACT -- 1. INTRODUCTION -- 2. SKIN FRICTION REDUCTION BY MICROBUBBLES -- 2.1 Experiment at The Pennsylvania State Univ. -- 2.2 Kawakita's experiment in a cavitation tunnel -- 2.3 Experiment at NMRI using Small High-speed Water Tunnel (HSWT) -- 2.4 Experiments using 20m and 40m flat plate ships by Watanabe 1998 -- 2.5 Experiments using a 12m flat plate ship at NMRI -- 2.6 Experiments using a 50m flat plate ship at NMRI -- 3. LOCAL VOID RATIO DISTRIBUTION OF MICROBUBBLES -- 4. SKIN FRICTION REDUCTION MECHANISM OF MICROBUBBLES -- 5. FRICTIONAL DRAG REDUCTION BY MICROBUBBLES -- 6. APPLICABILITY OF MICROBUBBLES TO SHIPS -- 7. FULL-SCALE MICROBUBBLE EXPERIMENT -- 8. CONCLUSIONS -- ACKNOWLEDGEMENTS -- References -- DISCUSSION -- AUTHORS' REPLY -- DISCUSSION -- AUTHORS' REPLY -- Wave Patterns and Minimum Wave Resistance for High-Speed Vessels -- ABSTRACT -- INTRODUCTION -- HAVELOCK SOURCES -- THIN SHIPS -- Generalisations of thin-ship theory -- Computational considerations -- Sample results -- PRESSURE DISTRIBUTIONS -- Results for simple pressure patches -- Minimum wave resistance patches -- Free-wave spectrum -- PLANING SURFACES -- Edge conditions -- Flat plate example -- CONCLUSIONS -- ACKNOWLEDGEMENT -- References -- DISCUSSION -- AUTHORS' REPLY -- DISCUSSION -- AUTHORS' REPLY -- Prediction of High Reynolds Number Flow around Naval Vessels -- ABSTRACT -- INTRODUCTION -- Project goal -- Project organisation -- Model test programme -- Numerical program -- HULL FORMS -- FULL SCALE MEASUREMENTS -- Instrumentation -- « De Ruyter» trials -- «Alliance» Trials -- Data analysis -- Full scale LDV results -- Full scale pitot tube data.

TESTS IN THE WATER TUNNEL -- Facility -- Instrumentation -- EUCLID Submarine in the GTH -- Alliance in the GTH -- Uncertainty assessment -- TESTS IN THE TOWING TANK -- Facility -- Instrumentation -- Alliance in the towing Tank -- NUMERICAL SIMULATION USING COMMERCIAL CODE -- Code selection -- Turbulence model implementation -- EUCLID Sub calculation -- Validation on the "Alliance" -- Full scale computations -- NUMERICAL SIMULATION USING INSEAN CODE -- Code description -- Turbulence models -- Mesh Generation -- Propeller model -- Verification and validation -- CONCLUSIONS -- REFERENCES -- DISCUSSION -- AUTHORS' REPLY -- DISCUSSION -- AUTHORS' REPLY -- DISCUSSION -- AUTHORS' REPLY -- Frontiers in Experimental Techniques -- INTRODUCTION -- PIV MEASUREMENTS IN TURBOMACHINES -- OCEANOGRAPHIC APPLICATION OF PIV -- 3-D VELOCITY MEASUREMENTS USING HPIV -- SUMMARY AND CONCLUDING COMMENTS -- ACKNOWLEDGEMENT -- REFERENCES -- DISCUSSION -- AUTHOR'S REPLY -- TOWARD VIRTUAL REALITY BY COMPUTATIONAL PHYSICS -- ABSTRACT -- 1. INTRODUCTION -- 2. FREE-SURFACE SHOCK WAVE -- 3. THIN, LONG-PROTRUDENT BULB -- 4. TUMMAC -- 5. WAVE BREAKING SIMULATION -- 6. SEPARATED FLOW -- 7. MOVING TECHNOLOGY -- 8. RACING YACHT DESIGN -- 9. SHIPS IN WAVES -- 10. DESIGN BY VIRTUAL REALITY -- CONCLUDING REMARKS -- References -- DISCUSSION -- AUTHOR'S REPLY -- DISCUSSION -- AUTHOR'S REPLY -- Study on the CFD Application for VLCC Hull-Form Design -- ABSTRACT -- INTRODUCTION -- NUMERICAL METHOD -- Governing equation -- Turbulence model -- Computational method -- Boundary conditions and grid generation -- SELECTION OF OBJECT SHIPS AND MODEL TESTS -- Selection of object ships -- Model tests -- RESULTS AND COMPARISONS -- DISCUSSIONS AND CONCLUSIONS -- REFERENCES -- DISCUSSION -- AUTHORS' REPLY -- Unsteady RANS Simulation of a Surface Combatant with Roll Motion -- ABSTRACT -- 1 INTRODUCTION.

2 RANS SOLUTION METHODOLOGY -- 2.1 Governing Equations -- 2.2 Initial and Boundary Conditions -- 2.3 Numerical Method -- 2.3.1 Discretization -- 2.3.2 Pressure-Velocity Coupling -- 2.3.3 Kinematic Free-Surface Boundary Condition Solver (KFSBC) -- 2.3.4 Summary -- 3 SHIP MOTIONS -- 3.1 Prescribed Motions -- 3.2 Predicted Motions -- 4 GEOMETRY, DATA, AND CONDITIONS -- 4.1 Geometry -- 4.2 Data -- 4.3 Conditions -- 5 COMPUTATIONAL GRIDS AND TIME STEP -- 5.1 Verification and Validation of Steady Flow -- 5.2 Unsteady Roll Simulations -- 5.3 Time Step -- 6 VERIFICATION AND VALIDATION -- 7 RESULTS -- 7.1 Boundary Layer -- 7.2 Free-surface -- 7.3 FORCES AND MOMENTS -- 7.4 Free Roll Decay -- 8 CONCLUDING REMARKS -- 9 ACKNOWLEDGEMENTS -- REFERENCES -- DISCUSSION -- AUTHORS' REPLY -- On the Role played by Turbulence Closures in Hull Shape Optimization at Model and Full Scale -- ABSTRACT -- 1 INTRODUCTION -- 2 DESIGN PROCEDURE -- 2.1 Problem statement -- 2.2 Optimization loop -- 3 FLOW SOLVER -- 3.1 Conservation equations -- 3.2 Numerical framework -- 4 TURBULENCE MODELS -- 4.1 Reynolds Stress Model -- 4.2 Turbulent Frequency Equation for the Reynolds Stress Model -- 5 PARAMETERIZATIONS -- 6 MESH UPDATE -- 7 OPTIMIZATION ALGORITHM -- 7.1 Strategy -- 7.2 Algorithm -- 8 APPLICATION TO HULL SHAPE OPTIMIZATION -- 8.1 Study of the flow around the KVLCC2 tanker -- 8.2 Drag Reduction -- 8.2.1 Model scale -- 8.2.2 Full scale -- 8.2.3 Comparison of results at model and full scale -- 8.3 Homogenization of the flow at the propeller location -- 9 CONCLUDING REMARKS -- References -- DISCUSSION -- AUTHORS' REPLY -- The Use of a RANS Code in the Design and Analysis of a Naval Combatant -- ABSTRACT -- INTRODUCTION -- GOV'T-2 GEOMETRY MODIFICATIONS -- GRID GENERATION -- Bare Hull Configurations -- Hulls Appended with Propulsor -- Transom Stern Issues -- FLOW SOLVER.

FLOW SOLUTIONS -- Bare Hull Configurations -- Concept-3 with Propulsor -- GOV'T-2 CALCULATIONS -- CONCLUSIONS -- ACKNOWLEDGEMENTS -- REFERENCES -- Efficient Methods to Compute Steady Ship Viscous Flow with Free Surface -- ABSTRACT -- 1 INTRODUCTION -- 2 STATE OF THE ART IN RANS/FS METHODS -- Methods used -- Quality of the predictions -- Desired improvements -- 3 COMPUTING VISCOUS FLOW UNDER A PRECOMPUTED WAVE SURFACE -- Inviscid wave pattern computation -- Computation of the viscous flow -- The composite approach -- Results and applications -- 4 A STEADY ITERATIVE SOLUTION METHOD FOR FREE-SURFACE VISCOUS FLOWS -- Motivation -- Time dependence and integration times -- Derivation of the method -- Free-surface potential flows -- Free-surface viscous flows -- Implementation -- Results -- 5 DISCUSSION AND CONCLUSIONS -- ACKNOWLEDGEMENT -- REFERENCES -- DISCUSSION -- AUTHORS' REPLY -- DISCUSSION -- AUTHORS' REPLY -- Hydrofoil Near-wake Structure and Dynamics at High Reynolds Number -- ABSTRACT -- INTRODUCTION -- EXPERIMENTAL SET-UP -- RESULTS-PRESSURE COEFFICIENTS -- RESULTS-DEPENDENCE OF SHEDDING ON GEOMETRY -- RESULTS-DEPENDENCE OF SHEDDING ON REYNOLDS NUMBER -- SUMMARY AND CONCLUSIONS -- ACKNOWLEDGEMENTS -- REFERENCES -- APPENDIX A: ERROR ANALYSIS OF THE VELOCITY SPECTRA MEASUREMENTS -- APPENDIX B: THE RIGID HYDROFOIL APPROXIMATION -- Unstructured Nonlinear Free Surface Simulations for the Fully-Appended DTMB Model 5415 Series Hull Including Rotating Propuls -- ABSTRACT -- INTRODUCTION -- NAVIER-STOKES SOLUTION ALGORITHM -- GOVERNING EQUATIONS -- NUMERICAL APPROACH FOR NAVIER-STOKES EQUATIONS -- RECONSTRUCTION -- RESIDUAL EVALUATION -- SPATIAL RESIDUAL -- TEMPORAL RESIDUAL -- TIME EVOLUTION -- BOUNDARY CONDITIONS -- TURBULENCE MODEL -- PARALLELIZATION -- NONLINEAR FREE SURFACE ALGORITHM -- GOVERNING EQUATIONS -- NUMERICAL APPROACH FOR FREE SURFACE.

FREE SURFACE BOUNDARY CONDITION -- GRID MOVEMENT ALGORITHM -- EXAMPLES -- UNPOWERED FULLY-APPENDED 5415 -- POWERED FULLY-APPENDED 5415 -- CONCLUSIONS -- ACKNOWLEDGMENTS -- References -- DISCUSSION -- AUTHORS' REPLY -- DISCUSSION -- AUTHORS' REPLY -- DISCUSSION -- AUTHORS' REPLY -- DISCUSSION -- AUTHORS' REPLY -- Bow Waves on a Free-Running, Heaving And/or Pitching Destroyer -- ABSTRACT -- INTRODUCTION -- Brief Review -- Bow Wave, Sheet Separation, and Spray -- EXPERIMENTAL FACILITIES -- Supercritical Flow Facility -- Bow Wave Facility -- RESULTS AND DISCUSSION -- Basic Bow Wave -- Heave Motions -- Pitch Motions -- Combined Heave and Pitch Motions -- Ship at Higher Frs with Yaw -- Surfactants and Supercritical Flow -- CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- Numerical simulation of two-dimensional breaking waves past a submerged hydrofoil -- ABSTRACT -- INTRODUCTION -- A LOCAL MODEL FOR SPILLING BREAKING -- TEST CASE -- RESULTS AND DISCUSSION -- CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- DISCUSSION -- AUTHORS' REPLY -- GENESIS OF DESIGN WAVE GROUPS IN EXTREME SEAS FOR THE EVALUATION OF WAVE/STRUCTURE INTERACTION -- ABSTRACT -- INTRODUCTION -- LINEAR TRANSIENT WAVE DESCRIPTION -- NONLINEAR TRANSIENT WAVE DESCRIPTION -- INTEGRATION OF DESIGN WAVE GROUPS IN IRREGULAR SEAS-LINEAR APPROACH -- INTEGRATION OF A NONLINEAR ROGUE WAVE SEQUENCE INTO EXTREME SEAS -- COMPUTER CONTROLLED CAPSIZING TESTS USING TAILORED WAVE SEQUENCES -- DYNAMICS OF SEMISUBMERSIBLES IN ROGUE WAVES -- CONCLUSIONS -- ACKNOWLEDGEMENTS -- REFERENCES -- DISCUSSION -- DISCUSSION -- REFERENCES -- AUTHOR'S REPLY -- DISCUSSION -- DISCUSSION -- AUTHOR'S REPLY -- REFERENCES -- Direct numerical simulation of surface tension dominated and non-dominated breaking waves -- ABSTRACT -- INTRODUCTION -- NUMERICAL MODEL -- Domain Decomposition Technique -- Navier-Stokes solver.

Free surface capturing via Level-Set technique.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: