Cover image for Radiation Biology of Medical Imaging.
Radiation Biology of Medical Imaging.
Title:
Radiation Biology of Medical Imaging.
Author:
Kelsey, Charles A.
ISBN:
9781118517130
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (344 pages)
Contents:
Cover -- Title page -- Copyright page -- Contents -- Acknowledgments -- Introduction -- CHAPTER 1: Anatomy and Physiology -- Introduction -- Mammalian Cell Components -- Tissue Groups -- Tissue Growth -- Organs and Organ Systems -- Homeostasis -- Summary -- Bibliography -- Questions -- Chapter 1 Questions -- CHAPTER 2: The Cell -- Introduction -- Cell Structure -- Cell Membranes -- Membrane Transport -- Cellular Junctions -- Cell Cycle -- Cellular Division -- Cell Death -- Summary -- Bibliography -- Questions -- Chapter 2 Questions -- CHAPTER 3: Radiation Characteristics and Units -- Introduction -- Types of Ionizing Radiation -- EM Radiation -- Atoms and Isotopes -- Particulate Radiation -- Alpha Particles -- Electrons (Beta Particles) and Positrons -- Neutrons -- Protons -- Radiation Units: Traditional and Modern -- Exposure -- Absorbed Dose -- Equivalent Dose -- Effective Dose -- Activity -- Summary -- Bibliography -- Questions -- Chapter 3 Questions -- CHAPTER 4: Radiation Interactions with Tissue -- Introduction -- Charged Particle Interactions -- EM Radiation Interactions -- Photoelectric Effect -- Compton Scattering -- Pair Production -- Neutrons -- Specific Ionization -- Linear Energy Transfer (LET) -- Path and Range of Charged Particles -- Half-Value Layer (HVL) (Photons) -- Effects on Tissue -- Direct Action -- Indirect Action -- The Relative Biological Effectiveness (RBE) of High- versus Low-LET Radiations -- Summary -- Bibliography -- Questions -- Chapter 4 Questions -- CHAPTER 5: Cell Survival Curves -- Introduction -- The In Vitro Survival Curve -- Cell Survival Curves: Description of Experimental Method -- Cell Survival Curves: Quantification -- Plating Efficiency -- Surviving Fraction -- Surviving Fraction versus Dose: The Cell Survival Curve -- Modeling the Shape of the Survival Curve -- Single-Target/Single-Hit Model.

Multitarget Model (also "Two-Component Model" or "Dq, D0, and n Model") -- The Significance of the Multitarget Parameters -- LQ or α/β Model -- Application of the Multitarget and LQ Models in Radiobiology -- Factors Affecting the Shape of Survival Curves -- The Shoulder Region: Multihit Cell Killing Mechanisms and Cell Repair -- Survival Curve Shape and LET -- Chemicals -- Oxygen: An Important Radiosensitizer -- Radioprotectors -- Summary -- Bibliography -- Questions -- Chapter 5 Questions -- CHAPTER 6: DNA and Genetics -- Introduction -- History -- DNA Structure -- DNA Functions -- DNA Replication and Repair -- Genome -- Summary -- Bibliography -- Questions -- Chapter 6 Questions -- CHAPTER 7: Radiation Damage and Repair of Cells -- Introduction -- DNA Strand Breaks -- DNA Damage versus Mutation -- Chromosomes and Cell Division -- Lethal Radiation-Induced Aberrations -- Nonlethal Aberrations -- The Bystander Effect -- Radiosensitivity and the Mitotic Cycle -- Classifications of Radiation Damage and Repair -- Evidence of Repair from Split Doses and Fractionation -- Evidence of Repair from the Dose-Rate Effect -- Summary -- Bibliography -- Questions -- Chapter 7 Questions -- CHAPTER 8: Normal and Malignant Cells -- Introduction -- Normal Cells -- Normal Cells Exhibit Genetic Stability -- Normal Cell Death -- Normal Cell Replication Requires an External Growth Signal -- Normal Cells Obey Antigrowth Signals at Tissue Borders -- Normal Tissues Have Their Own Blood Supply -- Normal Cells Are Limited to about 60 Reproductive Cycles -- Normal Cells Retain Their Organization -- Cancer Cells and Their Characteristics -- The Characteristics of Cancer Cells -- Cancer Cells Exhibit Genetic Instability -- Cancer Cells Evade Apoptosis -- Cancer Cells Ignore Antigrowth Signals -- Cancer Cells Generate Their Own Internal Growth Signals.

Cancer Cells Ignore Antigrowth Signals at Boundaries -- Cancer Cells Generate Their Own Blood Supply (Angiogenesis) -- Cancer Cells Reproduce Indefinitely -- Cancer Cells Metastasize -- Cancer Cells Lose Their Cell Type or Differentiation -- Cancer Grade -- Traditional Hypothesis of Cancer Development -- The Random Multimutation Hypothesis of Cancer Development -- The Master Gene Hypothesis of Cancer Development -- The Aneuploidy or Multichromosome Hypothesis of Cancer Development -- Predictions Regarding Treatment -- Traditional and Random Multimutation Hypotheses -- Predictions Regarding the Master Gene Hypothesis -- Predictions Regarding the Excess Aneuploidy Hypothesis -- Radiation and Cancer -- Summary and Important Points -- Bibliography -- Questions -- Chapter 8 Questions -- CHAPTER 9: Radiation Effects on Tissues and Organs -- Latent Period -- Deterministic and Stochastic Radiation Damage -- Stochastic Effects -- Radiation Effects on Tissues -- Bladder -- Blood and Blood Vessels -- Bone -- Brain -- Breast -- Esophagus -- Eye -- Fetus -- Genetically Significant Dose (GSD) -- Heart Damage due to Radiation -- Intestine -- Kidneys -- Liver -- Lungs -- Rectum, Bladder, and Prostate -- Reproductive Organs, Ovaries, and Testicles -- Skin -- Spinal Cord -- Thyroid -- Summary -- Bibliography -- Questions -- Chapter 9 Questions -- CHAPTER 10: Whole Body Radiation Effects -- Introduction -- Acute Radiation Syndrome (ARS) -- Mean Lethal Dose (LD50) -- Clinical Syndromes of ARS -- Hematopoietic Syndrome -- Gastrointestinal Syndrome -- Neurovascular Syndrome (Central Nervous System) -- Stages of ARS -- Prodromal Stage -- Latent Stage -- Manifest Illness Stage -- Recovery or Death -- Bystander Effect -- Summary -- Bibliography -- Questions -- Chaper 10 Questions -- CHAPTER 11: Radiation Treatment of Cancer -- The Four Rs of Radiation Oncology.

Cell Survival Curves and Fractionation -- Fractionation -- Hyperfractionation -- Hypofractionation or Continuous Radiation -- Complications from Radiation Therapy -- Techniques Used to Treat Cancer -- External Beam Treatment -- Brachytherapy or Implant Therapy -- Summary -- Bibliography -- Questions -- Chapter 11 Questions -- CHAPTER 12: Radiation Biology of Diagnostic Imaging -- Diagnostic Procedures -- Fluoroscopy -- Mammography -- Computerized Tomography (CT) -- Radiobiology of Radiographic Imaging -- Skin -- Reproductive Organs -- Eye -- Thyroid -- Female Breast -- Patient Concerns and Questions -- Summary of Diagnostic X-ray Radiation Effects -- Bibliography -- Questions -- Chapter 12 Questions -- CHAPTER 13: Nuclear Medicine Radiation Biology -- Introduction -- Isotopes and Radiopharmaceuticals -- Radioactive Decay -- External Dosimetry -- Internal Dosimetry -- Half-Life and Cumulated Activity -- The Biological Half-Life and Effective Half-Life -- Medical Internal Radiation Dosimetry (MIRD) -- Fetal Dose -- Conclusion -- Bibliography -- Questions -- Chapter 13 Questions -- CHAPTER 14: Environmental Radiation -- Introduction -- Natural Background Radiation Sources -- Inhalation Sources -- Internal Sources -- Cosmic Radiation -- Primordial and Terrestrial -- Man-Made Radiation -- Occupational Exposure -- Smokers -- Medical Radiation Exposure -- Benefits of Radiation -- Risk of Typical Radiation Exposures -- Summary -- Bibliography -- Questions -- Chapter 14 Questions -- CHAPTER 15: Regulations and Risk -- Introduction -- Expressions of Risk -- Organizations -- Sources of Data -- Dose-Response Models -- Sunk Cost Bias -- Radiation Protection Recommendations and Regulations -- Conclusions -- Bibliography -- Questions -- Chapter 15 Questions -- CHAPTER 16: Biological Effects of Ultrasound -- Introduction -- Ultrasound Properties and Procedures.

Properties of Ultrasound Waves -- Ultrasound Imaging Equipment -- Biological Effects of Ultrasound Waves -- Ultrasound Regulations -- Other Types of Medical Ultrasound Procedures -- Summary of Radiation Effects of Ultrasound -- Safety Statement -- Bibliography -- Questions -- Chapter 16 Questions -- CHAPTER 17: Biological Effects of Magnetic Resonance Imaging -- Topics -- Introduction -- Basic Principles of MRI -- Biological Effects of MRI -- Main Magnet: Static Magnetic Field and Field Gradient Effects -- The RF Coil: Oscillating Magnetic Field Effects -- Imaging Field Gradients: Time-Varying Magnetic Field Effects -- Implanted Medical Devices -- Other Considerations -- Conclusions -- Summary -- Bibliography -- Questions -- Chapter 17 Questions -- Answers to Odd-Numbered Questions -- Chapter 1 Answers -- Chapter 2 Answers -- Chapter 3 Answers -- Chapter 4 Answers -- Chapter 5 Answers -- Chapter 6 Answers -- Chapter 7 Answers -- Chapter 8 Answers -- Chapter 9 Answers -- Chapter 10 Answers -- Chapter 11 Answers -- Chapter 12 Answers -- Chapter 13 Answers -- Chapter 14 Answers -- Chapter 15 Answers -- Chapter 16 Answers -- Chapter 17 Answers -- Index.
Abstract:
This book provides a thorough yet concise introduction to quantitative radiobiology and radiation physics, particularly the practical and medical application. Beginning with a discussion of the basic science of radiobiology, the book explains the fast processes that initiate damage in irradiated tissue and the kinetic patterns in which such damage is expressed at the cellular level. The final section is presented in a highly practical handbook style and offers application-based discussions in radiation oncology, fractionated radiotherapy, and protracted radiation among others. The text is also supplemented by a Web site.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: