Cover image for Woods Hole Mathematics : Perspectives In Mathematics And Physics.
Woods Hole Mathematics : Perspectives In Mathematics And Physics.
Title:
Woods Hole Mathematics : Perspectives In Mathematics And Physics.
Author:
Tongring , Nils.
ISBN:
9789812701398
Personal Author:
Physical Description:
1 online resource (360 pages)
Contents:
PREFACE -- INTRODUCTION -- CONTENTS -- QUANTIZING TEICHMÜLLER SPACES USING GRAPHS -- 1. Introduction -- 2. Classical Teichmüller spaces -- 2.1. Poisson algebra of geodesics and classical skein relations -- 2.2. General Poisson algebras of geodesics -- 3. Quantization -- 3.1. Geodesic length operators -- 3.2. Algebra of quantum geodesics -- 3.3. Quantizing the Nelson-Regge algebras -- 4. Conclusion -- References -- LECTURES ON INDICES AND RELATIVE INDICES ON CONTACT AND CR-MANIFOLDS -- 1. Fredholm operators and Toeplitz operators on the circle -- 2. Contact and CR-manifolds -- 3. CR-functions and a generalization of Toeplitz operators -- 4. Pseudodifferential operators, symbols and radial compactification -- 5. Parabolic compactifications for contact manifolds -- 6. The Heisenberg calculus -- 7. Application of the Heisenberg calculus to several complex variables -- 8. The quantum harmonic oscillator and b -- 9. Fields of harmonic oscillators -- 10. Vector bundle coefficients and the Atiyah-Singer index theorem -- 11. The Boutet de Monvel index formula -- 12. An index theorem for the Heisenberg calculus -- 13. The structure of the higher eigenprojections -- 14. Grauert tubes and the Atiyah-Singer index theorem -- 15. The contact degree and index of FIOs -- Acknowledgments -- References -- BIOLOGIC II -- 1. Introduction -- 2. Replication of DNA -- 3. Logic, Copies and DNA Replication -- 4. Lambda Algebra - Replication Revisited -- 5. Quantum Mechanics -- 5.1. Quantum Formalism and DNA Replication -- 5.2. Quantum Copies are not Possible -- 6. Mathematical Structure and Topology -- 6.1. Projectors and Meanders -- 6.2. Protein Folding and Combinatorial Algebra -- 7. Cellular Automata -- 7.1. Other Forms of Replication -- 8. Epilogue - Logic and Biology -- Acknowledgments -- References -- OPERADS, MODULI OF SURFACES AND QUANTUM ALGEBRAS.

1. Introduction -- Acknowledgments -- 2. Notation -- 3. Trees -- 3.1. General Definitions -- 3.2. Structures on Rooted Trees -- 3.3. Planar Trees -- 3.4. Structures on Planar Trees -- 3.5. Planted Planar Trees -- 3.6. Labelled Trees -- 3.7. Black and White Trees -- 3.8. Notation I -- 3.9. Notation II -- 3.10. Notation III -- 3.11. The Map cppin : Tr Tppbp -- 3.12. The Map st : Tppst Tppbp -- 4. Operads -- 4.1. Operads -- 4.2. Induced Operads -- 4.3. The Fundamental Examples -- 4.4. The Operad of Functions -- 4.5. Rooted Leaf Labelled Trees -- 4.6. Bordered Surfaces and Corollas -- 4.7. Tree Insertion Operads -- 4.8. Signs -- 4.9 Other Tree Insertion Operads and Compatibilities -- 4.10. Variations of Operads -- 4.11. Algebras Over Operads -- 4.12. Operads Classifying Algebras -- 4.13. The Operad for Commutative Algebras -- 4.14. The Operad for Associative Algebras -- 4.15. The Operad for Gerstenhaber Algebras -- 4.16. The Operad for Batalin-Vilkovisky (BV) Algebras -- 4.17. The Pre-Lie Operad -- 4.18. Operads of Surfaces with Extra Structure -- 4.19. Operads of Moduli Spaces of Curves -- 4.20. Arc Operads -- 5. The Arc Operad -- 5.1. The space -- 5.2. The Operad Structure alias the Glueing Maps. -- 5.3. Several Models for Arcs -- 5.4. Pictorial Representations of Arc Families -- 5.5. Glueing Weighted Arc Families. -- 5.6. A Pictorial Representation of the Glueing -- 5.7. The Deprojectivized Spaces D Arc -- 5.8. Notation -- 5.9. Suboperads and PROPS -- 5.10. Linearity Condition -- 5.11. String Interpretation -- 5.12. Relation to Moduli Spaces -- 5.13. Arc Families and their Induced Operations. -- 5.14. The BV Operator -- 5.15. The Associator -- 6. Species of Cacti and their Relations to other Operads -- 6.1. Configurations of Loops and their Graphs -- 6.2. Cacti and Spineless Cacti -- 6.3. Glueing for Cacti.

6.4. The Chord Diagram and Planar Planted Tree of a Cactus -- 6.5. Normalized Cacti and Normalized Spineless Cacti -- 6.6. Gluing for Normalized Cacti -- 6.7. Scaling of a Cactus and Projective Cacti -- 6.8. Left, Right and Symmetric Cacti Operads -- 6.9. Cacti as a Suboperad of D Arc -- 6.10. Framing of a Cactus -- 6.11. The Loop of an Arc Family -- 6.12. The Boundary Circles -- 6.13. The Equivalence Relations Induced by Arcs -- 6.14. From Loops to Arcs -- 6.15. Configurations, Loops and Ribbon Graphs -- 6.16. Comments on an Action on Loop Spaces -- 6.17. Remarks -- 7. Little Discs, Spineless Cacti and the Cellular Chains of Normalized Spineless Cacti -- 7.1. Cacti as Semi-Direct Products of Normalized Cacti -- 7.2. The Scaling Operad -- 7.3. The Perturbed Compositions -- 7.4. The Perturbed Multiplications in Terms of an Action -- 7.5. Cact(i) and the (Framed) Little Discs Operad -- 7.6. A Cell Decomposition for Spineless Cacti -- 7.7. Orientations of Chains -- 7.8. The Differential on Tpp,ntbp -- 7.9. The Operadic Action of Tpp,ntbp -- 7.10. The Action of the Symmetric Group -- 7.11. The Action of Chain(Arc) on Itself and String Topology -- 8. Structures on Operads and Meta-Operads -- 8.1. The Universal Concatenations -- 8.2. The pre-Lie Structure of an Operad -- 8.3. The Insertion Operad -- 8.4. Notation -- 8.5. The Hopf Algebra of an Operad -- 9. Spineless Cacti as a Natural Solution to Deligne's Conjecture -- 9.1. The Hochschild Complex, its Gerstenhaber Structure and Deligne's Conjecture -- 9 .2. The Differential on CH* -- 9.3. The Gerstenhaber Structure -- 9.4. Deligne's Conjecture -- 9.5. The Operation of CC*(Cact1) on HomCH -- 9.6. Signs for the Braces -- 9.7. The Differential -- 9.8. Another Approach to Signs and Actions -- 9.9. A Second Approach to the Operation of CC*(Cact1) -- 9.10. Natural Operations on CH* and their Tree Depiction.

9.11. The Operation of Tpp,ntbp -- 9.12. The Differential -- 9.13. A Solution Of Deligne's Conjecture from Spineless Cacti -- 9.14. The Action -- 9.15. Deligne's Conjecture -- 10. The Relation of Cact to Connes-Kreimer's Hopf Algebra and Generalizations -- 10.1. Connes-Kreimer's Hopf Algebra as the Hopf Algebra of an Operad -- 10.2. The Top Dimensional Cells of Spineless Cacti and the Pre-Lie Operad -- 10.3. A Cell Interpretation of HCK -- 10.4. Comments on Operads and HCK -- 10.5. Operad Algebras and a Generalized Deligne Conjecture -- 10.6. Differential on Trees with Tails -- 10.7. A Cyclic Version of Deligne's Conjecture -- 11. Outlook and Speculations -- 11.1. Operation on the Hochschild Complex of an A algebra -- 11.2. A Putative Cell Decomposition -- 11.3. Truncation of Simplices and Stasheff Polytopes -- 11.4. Relations to the Fulton-MacPherson Compactification -- 11.5. Actions of Arc -- 11.6. Rankin-Cohen Brackets -- 11.7. Open Ends and Questions -- References -- FRAGMENTS OF NONLINEAR GROTHENDIECK-TEICHMÜLLER THEORY -- 1. Introduction -- 2. A Short Reminder and A Reading Guide -- 3. Glimpses of the motivic theory -- 4. Nonlinear? -- 4.1. Profinite versus pronilpotent: -- 4.2. Group actions versus linear representations: -- 4.3. Good groups versus rigid ones: -- 4.4. Amalgamation versus extension: -- 4.5. All genera versus genus 0: -- 4.6. Stack inertia versus inertia at infinity: -- Appendix: Belyi's theorem and 'dessins d'enfant' -- References -- Cell Decomposition and Compactification of Riemann's Moduli Space in Decorated Teichmüller Theory -- Introduction -- 1. Definitions and cell decomposition for punctured surfaces -- 2. Coordinates on Teichmüller space for punctured surfaces -- 3. Bordered surfaces -- 4. The arc complex of a bordered surface -- 5. Sphericity -- 6. Punctured surfaces and fatgraphs -- 7. Operads.

Appendix. Biological Applications -- Bibliography -- SPATIAL INTERMITTENCY IN TWO-DIMENSIONAL TURBULENCE: A WAVELET APPROACH -- 1. Introduction -- 2. Classical methods for studying intermittency -- 3. Wavelet methods for studying intermittency -- 3.1. Orthogonal wavelet transform -- 3.2. Wavelet spectra -- 3.3. Relation between wavelet and Fourier spectra -- 3.4. Wavelet intermittency measures -- 3.5. Relation to structure functions -- 4. Application to two-dimensional turbulence -- 4.1. Classical statistical analysis -- 4.2. Wavelet statistical analysis -- 4.3. Extended self-similarity -- 5. Conclusion -- Acknowledgements -- Appendix -- References -- AN ELEMENTARY DEFINITION OF BROWNIAN MOTION IN HILBERT SPACE -- 1. Introduction -- References -- SERIES ON KNOTS AND EVERYTHING.
Abstract:
The central theme of this volume is the contemporary mathematics of geometry and physics, but the work also discusses the problem of the secondary structure of proteins, and an overview of arc complexes with proposed applications to macromolecular folding is given. â€Woods Hole has played such a vital role in both my mathematical and personal life that it is a great pleasure to see the mathematical tradition of the 1964 meeting resurrected forty years later and, as this volume shows, resurrected with new vigor and hopefully on a regular basis. I therefore consider it a signal honor to have been asked to introduce this volume with a few reminiscences of that meeting forty years ago.” Introduction by R Bott (Wolf Prize Winner, 2000).
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: