Cover image for New Techniques in Digital Holography.
New Techniques in Digital Holography.
Title:
New Techniques in Digital Holography.
Author:
Picart, Pascal.
ISBN:
9781119091837
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (320 pages)
Contents:
Cover -- Title Page -- Copyright -- Content -- Introduction -- I.1. Bibliography -- 1: Basic Fundamentals of Digital Holography -- 1.1. Digital holograms -- 1.1.1. Interferences between the object and reference waves -- 1.1.2. Role of the image sensor -- 1.1.2.1. Spatial sampling and Shannon conditions -- 1.1.2.2. Low-pass filtering -- 1.1.2.3. Effect of the exposure time -- 1.1.2.4. Recording digital color holograms -- 1.1.3. Demodulation of digital holograms -- 1.1.3.1. Off-axis holograms -- 1.1.3.2. Phase-shifting digital holography -- 1.1.3.3. Parallel phase-shifting -- 1.1.3.4. Heterodyne digital holography -- 1.2. Back-propagation to the object plane -- 1.2.1. Monochromatic spherical and plane waves -- 1.2.2. Propagation equation -- 1.2.3. Angular spectrum transfer function -- 1.2.4. Kirchhoff and Rayleigh-Sommerfeld formulas -- 1.2.5. Fresnel approximation and Fresnel diffraction integral -- 1.3. Numerical reconstruction of digital holograms -- 1.3.1. Discrete Fresnel transform -- 1.3.1.1. Algorithm -- 1.3.1.2. Spatial resolution in the reconstructed plane -- 1.3.1.3. Effect of defocus and depth of focus -- 1.3.1.4. Effect of zero-padding -- 1.3.2. Reconstruction with convolution -- 1.3.2.1. Basic algorithm -- 1.3.2.2. Limits of classical approaches of convolution -- 1.3.2.3. Zero-padding of the impulse response -- 1.3.2.4. Adjustable magnification -- 1.4. Holographic setups -- 1.4.1. Fresnel holography -- 1.4.2. Fresnel holography with spatial spectrum reduction -- 1.4.3. Fourier holography -- 1.4.4. Lensless Fourier holography -- 1.4.5. Image-plane holography -- 1.4.6. Holographic microscopy -- 1.4.7. In-line Gabor holography -- 1.5. Digital holographic interferometry -- 1.5.1. Reconstruction of the phase of the object -- 1.5.2. Optical phase variations and the sensitivity vector -- 1.5.3. Phase difference method.

1.5.4. Phase unwrapping -- 1.6. Quantitative phase tomography -- 1.7. Conclusion -- 1.8. Bibliography -- 2: Digital In-line Holography Applied to Fluid Flows -- 2.1. Examples of measurements in flows -- 2.1.1. Increasing NA with a divergent wave -- 2.1.2. Choice of the magnification -- 2.1.3. 3D velocity measurements in a turbulent boundary layer -- 2.1.3.1. Recording holograms through a window-reticle -- 2.1.3.2. Error estimations -- 2.1.3.3. Velocity measurements -- 2.1.4. Cavitation bubbles measurements -- 2.1.4.1. Experimental setup -- 2.1.4.2. Bubble measurements -- 2.1.4.3. Experimental results -- 2.2. The fractional-order Fourier transform -- 2.3. Digital in-line holography with a sub-picosecond laser beam -- 2.4. Spatially partially coherent source applied to the digital in-line holography -- 2.5. Digital in-line holography for phase objects metrology -- 2.5.1. In-line holograms of transparent phase objects -- 2.5.1.1. CW regime -- 2.5.1.2. General theory for complex setup -- 2.5.1.3. Ultrashort pulse illumination -- 2.5.2. Reconstruction -- 2.5.3. Experimental results -- 2.6. Bibliography -- 3: Digital Color Holography For Analyzing Unsteady Wake Flows -- 3.1. Advantage of using multiple wavelengths -- 3.2. Analysis of subsonic wake flows -- 3.2.1. Description of the digital color holographic interferometer -- 3.2.2. Results obtained with subsonic wake flows -- 3.2.3. Comparison between holographic plate and digital holograms -- 3.3. Analysis of a supersonic jet with high-density gradients -- 3.3.1. Definition of an optical setup -- 3.3.2. Results obtained with a supersonic jet -- 3.4. Analysis of a hydrogen jet in a hypersonic flow -- 3.4.1. Experimental setup -- 3.4.2. Experimental results -- 3.4.3. Comparisons with numerical simulations -- 3.5. Conclusion -- 3.6. Acknowledgment -- 3.7. Bibliography.

4: Automation of Digital Holographic Detection Procedures for Life Sciences Applications -- 4.1. Introduction -- 4.2. Experimental protocol -- 4.2.1. Optical setup -- 4.2.2. Dynamic monitoring -- 4.3. General tools -- 4.3.1. Extraction of the full interferometric information -- 4.3.2. Compensation of the phase -- 4.3.3. Border processing -- 4.3.4. Best focus determination -- 4.4. Automated 3D detection -- 4.4.1. Introduction -- 4.4.2. Description of the testing samples -- 4.4.3. In-plane detection -- 4.4.3.1. Classical thresholding method -- 4.4.3.1.1. Description of the method -- 4.4.3.1.2. Detection results -- 4.4.3.2. Computation of propagating matrices -- 4.4.3.2.1. Description of the method -- 4.4.3.2.2. Detection results -- 4.4.3.3. Comparison of the two methods -- 4.4.4. In-depth detection -- 4.4.5. Discussion -- 4.5. Application -- 4.6. Conclusions -- 4.7. Bibliography -- 5: Quantitative Phase-Digital Holographic Microscopy: a New Modality for Live Cell Imaging -- 5.1. Introduction -- 5.2. Cell imaging with quantitative phase DHM -- 5.2.1. The origin and content of the quantitative phase signal -- 5.2.2. Cell counting and classification analysis -- 5.2.3. Exploration of cell movements and dynamics -- 5.2.4. Dry mass, cell growth and cell cycle -- 5.2.5. Cell membrane fluctuations and biomechanical properties -- 5.2.6. Dynamics of absolute cell volume and transmembrane water movements -- 5.3. High-content phenotypic screening based on QP-DHM -- 5.4. Multimodal QP-DHM -- 5.4.1. Multimodal fluorescence QP-DHM -- 5.4.2. Multimodal Raman-QP-DHM -- 5.4.3. Multimodal electrophysiology QP-DHM -- 5.5. Resolving neuronal network activity and visualizing spine dynamics -- 5.5.1. Background -- 5.5.2. Imaging neuronal activity by measuring transmembrane water movements with QP-DHM.

5.5.3. 3D Visualization of dendritic spine dynamics with quantitative phase tomographic microscopy (QP-TM) -- 5.6. Perspectives -- 5.7. Acknowledgments -- 5.8. Bibliography -- 6: Long-Wave Infrared Digital Holography -- 6.1. Introduction -- 6.2. Analog hologram recording in LWIR -- 6.3. Digital hologram recording in LWIR -- 6.3.1. Hardware components -- 6.3.1.1. Lasers -- 6.3.1.2. Camera technologies -- 6.3.1.3. Lenses-windows -- 6.3.1.4. Beamsplitters-beam combiners -- 6.3.1.5. Polarization components -- 6.3.2. Specific features of the LWIR domain -- 6.3.2.1. Decreased sensitivity of the holographic setup with respect to displacement -- 6.3.2.2. Size of reconstructed objects -- 6.3.2.3. Thermal background -- 6.3.2.4. Type of reflectivity of objects -- 6.4. Typical applications of LWIR digital holography -- 6.4.1. Recording holograms of large objects in LWIR and display in visible -- 6.4.2. Reconstruction of images through smoke and flames -- 6.4.3. Large deformations of specular aspheric reflectors -- 6.4.4. Combined holography and thermography for thermomechanical analysis and non-destructive testing -- 6.5. Conclusions: future prospects -- 6.6. Bibliography -- 7: Full Field Holographic Vibrometry at Ultimate Limits -- 7.1. Introduction -- 7.2. Heterodyne holography -- 7.2.1. Accurate phase shift and holographic detection bandwidth -- 7.2.2. Shot noise holographic detection -- 7.3. Holographic vibrometry -- 7.3.1. Optical signal scattered by a vibrating object -- 7.3.2. Selective detection of the sideband components Em: sideband holography -- 7.3.3. Sideband holography for large amplitude of vibration -- 7.3.4. Sideband holography with strobe illumination -- 7.3.5. Sideband holography for small amplitude of vibration -- 7.4. Conclusion -- 7.5. Bibliography -- List of Authors -- Index.
Abstract:
A state of the art presentation of important advances in the field of digital holography, detailing advances related to fundamentals of digital holography, in-line holography applied to fluid mechanics, digital color holography, digital holographic microscopy, infrared holography, special techniques in full field vibrometry and inverse problems in digital holography.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: