Cover image for Vibrational Spectroscopy With Neutrons : With Applications In Chemistry, Biology, Materials Science And Catalysis.
Vibrational Spectroscopy With Neutrons : With Applications In Chemistry, Biology, Materials Science And Catalysis.
Title:
Vibrational Spectroscopy With Neutrons : With Applications In Chemistry, Biology, Materials Science And Catalysis.
Author:
Mitchell, Philip C. H.
ISBN:
9789812567833
Personal Author:
Physical Description:
1 online resource (670 pages)
Contents:
Foreword -- Contents -- Acknowledgements -- Abbreviations, Acronyms and Computer Programs -- Glossary of Symbols -- 1 Introduction -- 1.1 Historical development of neutron scattering and key concepts -- 1.2 Inelastic neutron scattering (INS)-a spectroscopic technique -- 1.3 INS spectra -- 1.4 Information content of an INS spectrum -- 1.5 When to use neutrons -- 1.6 A note on units, symbols and chemical names -- 1.6.1 Spectrometers-accuracy and precision of reported results -- 1.7 References -- 2 The Theory of Inelastic Neutron Scattering Spectroscopy -- 2.1 The atomic cross sections -- 2.1.1 The coherent and incoherent scattering strengths -- 2.1.2 Spin incoherence -- 2.1.3 The incoherent approximation -- 2.1.4 Comparison with photon scattering cross sections -- 2.2 Some practical consequences -- 2.2.1 Effects of deuteration -- 2.3 Energy and momentum transfer -- 2.3.1 Worked examples-calculating momentum transfer -- 2.4 Thermal ellipsoids -- 2.5 The theoretical framework of neutron scattering -- 2.5.1 The scattering law -- 2.5.2 Powder averaging -- 2.5.3 Worked example-hydrogendifluoride (bifluoride) ion [HF2] -- 2.6 Band shaping processes in neutron spectroscopy -- 2.6.1 Vibrational dispersion -- 2.6.2 Density of vibrational states -- 2.6.3 Phonon wings -- 2.6.4 Worked example-phonon wings of the bifluoride ion -- 2.6.5 Molecular recoil -- 2.7 Conclusion -- 2.8 References -- 3 Instrumentation and Experimental Methods -- 3.1 Neutron sources -- 3.1.1 Reactor sources -- 3.1.2 Spallation sources -- 3.1.3 Which to use-reactor or spallation source? -- 3.2 Neutron transport -- 3.2.1 Neutron beam-tubes -- 3.2.2 Neutron guides -- 3.3 Neutron detection and instrument shielding -- 3.3.1 Detection -- 3.3.2 Instrumental shielding -- 3.4 Neutron spectrometers -- 3.4.1 Triple axis spectrometers -- 3.4.2 Indirect geometry instruments.

3.4.3 Direct geometry instruments -- 3.4.4 Choosing the optimal technique -- 3.5 Sample handling -- 3.5.1 Sample quantity and multiple scattering -- 3.5.2 Cryogenics -- 3.5.3 Conventional samples -- 3.5.4 Temperature, pressure and magnetic field -- 3.5.5 Catalysts and in situ experiments -- 3.5.6 Safety -- 3.6 References -- 4 Interpretation and Analysis of Spectra using Molecular Modelling -- 4.1 Modelling-the classical and ab initio approaches -- 4.1.1 The Born-Oppenheimer approximation -- 4.2 Normal mode analysis of molecular vibrations -- 4.2.1 Vibrations in molecules -- 4.2.2 Calculation of vibrational frequencies and displacements -- 4.2.3 The quantum problem -- 4.2.4 The energy levels of the harmonic oscillator -- 4.2.5 Worked example-vibrational frequencies of the bifluoride ion -- 4.2.6 Comparison with experiment-sodium bifluoride -- 4.2.7 A molecular modelling example-adamantane -- 4.3 The vibrational problem in the solid state -- 4.3.1 The solid state-crystals -- 4.3.2 Vibrations in one-dimensional crystal-one atom per unit cell -- 4.3.3 Vibrations in one-dimensional crystal-two atoms per unit cell -- 4.3.4 The three-dimensional crystal -- 4.3.5 Example of a simple system-lithium hydride -- 4.3.6 Calculation of the scattering law -- 4.3.7 The-k-space grid-computational and instrumental aspects -- 4.3.8 Comparison with experiment-sodium bifluoride -- 4.4 Calculations that avoid solving the dynamical matrix -- 4.4.1 Molecular dynamics -- 4.4.2 The velocity autocorrelation function -- 4.4.3 Computational considerations -- 4.5 Ab initio methods -- 4.5.1 Hartree-Fock method -- 4.5.2 Density functional theory -- 4.6 Use of force fields derived from classical mechanics -- 4.7 The ACLIMAX program -- 4.8 Conclusion -- 4.9 References -- 5 Analysis of INS spectra -- 5.1 General considerations-model compounds and the INS database.

5.2 Ammonium bromide -- 5.2.1 Observed INS spectrum of ammonium bromide -- 5.2.2 Molecular recoil -- 5.3 Benzene -- 5.3.1 The internal modes -- 5.3.2 Impact of the external modes -- 5.4 Molecular systems using a direct geometry spectrometer -- 5.4.1 A special case-liquid helium -- 5.4.2 Rubidium hexahydridoplatinate(IV) -- 5.4.3 Phonon wings -- 5.4.4 Low momentum transfer spectra -- 5.5 Conclusion -- 5.6 References -- 6 Dihydrogen and Hydrides -- 6.1 The rotational motion of diatomic molecules -- 6.1.1 The rotational spectroscopy of dihydrogen -- 6.1.2 Ortho-and para-hydrogen -- 6.1.3 The angular probability density function, P( , ) -- 6.1.4 The scattering law for dihydrogen rotations -- 6.1.5 An outline of the INS spectrum of dihydrogen -- 6.1.6 Experimental considerations-the conversion to para-hydrogen -- 6.2 The INS spectrum of dihydrogen in an anisotropic potential -- 6.2.1 Planar rotor in an attractive field-the 2-D type -- 6.2.2 Upright rotor in an attractive field-the 1-D type -- 6.2.3 Experimental consequences -- 6.3 Dihydrogen on graphite and carbons -- 6.3.1 Graphite and other carbons and carbon nanostructures -- 6.3.2 Alkali metal intercalated graphite -- 6.3.3 C60 -- 6.4 Dihydrogen in microporous oxides including zeolites -- 6.4.1 Dihydrogen in a cobalt aluminophosphate -- 6.4.2 Dihydrogen in zeolites -- 6.4.3 Dihydrogen in Vycor, nickel(II) phosphate and a zinc complex -- 6.5 Dihydrogen complexes -- 6.6 Hydrogen in metals -- 6.6.1 The spectral characteristics -- 6.6.2 Hydrogen trapping -- 6.6.3 The hydrogen vibrational potential -- 6.7 Metal hydrides -- 6.7.1 Alkali metal hydrides -- 6.7.2 Ternary metal hydrides -- 6.8 References -- Surface Chemistry and Catalysis -- 7.1 Vibrations of atoms in surfaces and adsorbed species -- 7.2 Experimental methods -- 7.3 INS studies of metal catalysts.

7.3.1 Metal-hydrogen vibrations and surface vibrational states -- 7.3.2 Hydrocarbons on metal catalysts and reference hydrocarbons -- 7.3.3 Acetonitrile, CH3CN-binding and hydrogenation -- 7.4 Oxides and oxide-supported catalysts -- 7.4.1 Molybdenum(VI) oxide on alumina-chemisorbed water -- 7.4.2 Selective oxidation of propene-the allyl radical -- 7.4.3 Copper zinc oxide catalysts-methanol synthesis -- 7.4.4 Gold on titanium dioxide-the hydrogen-oxygen reaction -- 7.5 Zeolites -- 7.5.1 Sodium, ammonium and protonated zeolite Y -- 7.5.2 Ammonium and protonated zeolite rho -- 7.5.3 Hydrated H-mordenite and ZSM-5 -- 7.5.4 Molecules in zeolites -- 7.6 Metal sulfide catalysts -- 7.6.1 S-H vibrational modes -- 7.6.2 Metal-hydrogen vibrational modes -- 7.6.3 Lattice vibrations and hydrogen riding modes -- 7.6.4 Computed INS spectra -- 7.6.5 Adsorbed dihydrogen -- 7.6.6 Thiophene and related compounds -- 7.7 Conclusion -- 7.8 References -- 8 Organic and Organometallic Compounds -- 8.1 Analysis of the INS spectra of organic compounds -- 8.1.1 Group frequencies -- 8.1.2 The Wilson GF method -- 8.1.3 Ab initio methods -- 8.2 Alkanes and cycloalkanes -- 8.3 Alkenes and alkynes -- 8.4 Aromatic and heteroaromatic compounds -- 8.5 Oxygen containing compounds -- 8.6 Nitrogen containing compounds -- 8.7 Organometallic compounds -- 8.8 References -- 9 Hydrogen Bonding -- 9.1 Spectroscople consequences of hydrogen bonding -- 9.1.1 General considerations -- 9.1.2 Symmetric hydrogen bonds -- 9.2 Water -- 9.2.1 Isolated water molecules in mineral lattices -- 9.2.2 The protonated species of water -- 9.2.3 Water-water solids-the ices -- 9.2.4 Water at biological interfaces -- 9.3 Proton transfer -- 9.3.1 The dicarboxylate model systems -- 9.3.2 Proton conducting materials -- 9.4 Unusual protonic species -- 9.4.1 The isotropic proton -- 9.4.2 The free proton.

9.5 Conclusion -- 9.6 References -- 10 Soft Condensed Matter- Polymers and Biomaterials -- 10.1 Crystalline polymers -- 10.1.1 Polyethylene and the n-alkanes -- 10.1.2 The n-alkanes -- 10.1.3 Polypropylene -- 10.1.4 Nylon-6 -- 10.1.5 Conducting polymers -- 10.2 Amorphous polymers -- 10.2.1 Polydimethylsiloxane -- 10.2.2 Advanced composites -- 10.3 Biological systems -- 10.3.1 Model peptides -- 10.3.2 Nucleic acids, nucleic acid bases, nucleotides and nucleosides -- 10.3.3 Amino acids and proteins -- 10.3.4 Phosphate biominerals -- 10.4 Conclusions -- 10.5 References -- 11 Non-hydrogenous Materials and Carbon -- 11.1 Analysis of spectra -- 11.1.1 Chlorine -- 11.1.2 Minerals -- 11.2 Carbon -- 11.2.1 Diamond -- 11.2.2 Graphite -- 11.2.3 C60 and the fullerenes -- 11.2.4 Amorphous hydrogenated carbon -- 11.2.5 Industrial carbons -- 11.2.6 Transition metal carbonyls and carbonyl hydrides -- 11.3 Conclusions -- 11.4 References -- 12 Vibrational Spectroscopy with Neutrons- the Future -- 12.1 References -- Appendix 1 Neutron Cross Sections of the Elements -- A1.1 References -- Appendix 2 Inelastic Neutron Scattering Theory -- A2.1 The neutron Schrödinger equation -- A2.2 Scattering theory -- A2.2.1 The transition rate-Fermi's Golden Rule -- A2.2.2 The form of the scattering potential -- A2.2.3 The scattering law -- A2.3 Scattering from vibrating molecules -- A2.4 Debye-Waller factor -- A2.5 Powder averaging -- A2.6 References -- Appendix 3 The Resolution Function of Crystal Analyser Spectrometers -- A3.1 The resolution function -- A3.1.1 The time dependent term -- A3.1.2 The incident flight path dependent term -- A3.1.3 The final energy dependent term -- A3.1.4 The final flight path dependent term -- A3.1.5 The resolution function -- A3.2 Design elements -- A3.2.1 Time focusing -- A3.2.2 The Marx principle -- A3.3 References.

Appendix 4 Systems Studied by INS.
Abstract:
Inelastic neutron scattering (INS) is a spectroscopic technique in which neutrons are used to probe the dynamics of atoms and molecules in solids and liquids. This book is the first, since the late 1960s, to cover the principles and applications of INS as a vibrational-spectroscopic technique. It provides a hands-on account of the use of INS, concentrating on how neutron vibrational spectroscopy can be employed to obtain chemical information on a range of materials that are of interest to chemists, biologists, materials scientists, surface scientists and catalyst researchers. This is an accessible and comprehensive single-volume primary text and reference source.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: