Cover image for Bio- and Bioinspired Nanomaterials.
Bio- and Bioinspired Nanomaterials.
Title:
Bio- and Bioinspired Nanomaterials.
Author:
Ruiz-Molina, Daniel.
ISBN:
9783527675852
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (487 pages)
Contents:
Bio- and Bioinspired Nanomaterials -- Contents -- List of Contributors -- Foreword -- Preface -- Part I: Bionanomaterials -- 1 Synthesis of Colloidal Gold and Silver Nanoparticles and their Properties -- 1.1 Introduction -- 1.2 Physical and Chemical Properties of Gold and Silver Nanoparticles -- 1.2.1 Optical Properties of Gold and Silver Nanoparticles -- 1.2.2 Electronic Properties of Gold and Silver Nanoparticles -- 1.3 Synthesis of Gold and Silver Core Nanoparticles -- 1.4 Transfer to Aqueous Media of Gold and Silver Nanoparticles from Organic Solvents -- 1.5 Some Applications of Gold and Silver Nanoparticles -- Acknowledgments -- References -- 2 Ceramic Smart Drug Delivery Nanomaterials -- 2.1 Introduction -- 2.2 Biodistribution, Toxicity, and Excretion of Nanoparticles -- 2.3 Mesoporous Silica Nanoparticles -- 2.4 Calcium Phosphate Nanoparticles -- 2.5 Carbon Allotropes -- 2.6 Iron Oxide Nanoparticles -- References -- 3 Polymersomes and their Biological Implications -- 3.1 Introduction -- 3.2 Self-Assembly of Amphiphiles -- 3.3 Polymersome - The Synthetic Analog of a Liposome -- 3.3.1 Polymersome Preparation Methods -- 3.3.1.1 Batch Methods -- 3.3.1.2 Continuous Flow Methods -- 3.3.2 Characterization of Polymersomes -- 3.4 Polymersomes as Drug Delivery Devices -- 3.4.1 Tuning Membrane Properties and Controlling the Release -- 3.4.1.1 pH-Responsive Polymersomes -- 3.4.1.2 Hydrolysis of Polymersomes Built from Biodegradable Polymers -- 3.4.1.3 GSH-Responsive (Redox) Vesicles -- 3.4.1.4 Temperature-Responsive Polymers -- 3.4.1.5 Magnetic Release -- 3.4.2 Surface Functionalization and Targeting Strategies -- 3.5 Embedding Channel Proteins in Artificial Polymer Membranes and Creating New Applications -- 3.6 Conclusions and Outlook -- List of Abbreviations -- References -- 4 MOFs in Pharmaceutical Technology -- 4.1 Introduction.

4.2 Metal-Organic Frameworks -- 4.2.1 Description -- 4.2.2 Synthesis, Formulation, and Functionalization/Shaping -- 4.2.2.1 Synthesis and Formulation/Shaping -- 4.2.2.2 Functionalization -- 4.2.3 Stability and Toxicity -- 4.3 MOFs for Therapeutics -- 4.3.1 BioMOFs -- 4.3.2 Active Ingredient Adsorption and Release from MOFs -- 4.3.2.1 Drugs -- 4.3.2.2 Cosmetics -- 4.3.3 Understanding -- 4.3.3.1 Encapsulation -- 4.3.3.2 Release -- 4.3.4 Theranostics -- 4.3.5 Efficacy -- 4.4 Conclusions -- List of Abbreviations -- References -- 5 Amorphous Coordination Polymer Particles for Biomedicine -- 5.1 Introduction -- 5.2 Interaction of Nanoplatforms with the Biological Environment -- 5.3 CPPs as Realistic Alternative to Classical Nanosystems -- 5.3.1 Encapsulation Systems Based on CPPs -- 5.3.2 Active Metal-Organic Units -- 5.3.2.1 Active Metal Ions -- 5.3.2.2 Drugs as Bridging Ligands -- 5.3.2.3 Active Complexes -- 5.3.3 Smart Delivery Systems -- 5.3.4 Bioimaging -- 5.3.5 Biocompatibility of CPPs -- 5.4 Conclusion and Future Challenges -- References -- 6 Magnetic Nanoparticles for Magnetic Hyperthermia and Controlled Drug Delivery -- 6.1 Introduction -- 6.2 Principles of Magnetically Induced Heat Generation -- 6.3 Synthesis of MNPs and their Heat Performance -- 6.3.1 Coprecipitation Method -- 6.3.2 Thermal Decomposition Method -- 6.4 Local Heating and Induced Biological and Drug Release Effects -- 6.5 In Vivo Drug Release from Magnetic Hybrid Systems Under Alternating Magnetic Field Exposure -- References -- 7 Photothermal Effect of Gold Nanostructures for Application in Bioimaging and Therapy -- 7.1 Introduction -- 7.2 Photophysical Characterization of Gold Nanostructures -- 7.2.1 Photophysical Behavior of Gold Nanostructures -- 7.2.2 Plasmonic Photothermal Effect -- 7.3 Tuning the Absorption Spectrum of Gold Nanostructures -- 7.3.1 Nanoparticles.

7.3.2 Nanoshells -- 7.3.3 Nanorods -- 7.3.4 Other Types of Nanostructures -- 7.4 Plasmonic Photothermal Effect of GNS in Imaging -- 7.4.1 Photoacoustic Imaging -- 7.4.2 Photothermal Imaging -- 7.4.3 Photothermal Treatments or Manipulation -- 7.4.3.1 Hyperthermia -- 7.4.3.2 Photothermal Ablation -- 7.5 Concluding Remarks -- Acknowledgment -- List of Abbreviations -- References -- 8 Nanomaterial-Based Bioimaging Probes -- 8.1 Introduction -- 8.2 Nanoprobes -- 8.3 Imaging Probes -- 8.4 Targeting Strategies -- 8.4.1 Passive Targeting -- 8.4.2 Active Targeting -- 8.4.3 Limitations -- 8.5 Nanotheranostics -- 8.6 Design Considerations -- 8.7 Summary and Future Trends -- References -- 9 Molecular Bases of Nanotoxicology -- 9.1 Introduction -- 9.2 Impact on Environment: Nanoecotoxicology -- 9.3 Impact on Health: Nanotoxicology -- 9.3.1 The Basis of Nanogenotoxicity: NPs Affect DNA Integrity and Stability -- 9.3.2 Hallmarks of gene Expression in Response to NPs -- 9.3.3 New Frontiers in Nanotoxicology: Nanomaterials Drive Epigenetic Changes -- References -- Part II: Bioinspired Materials - Bioinspired Materials for Technological Application -- 10 Bioinspired Interfaces for Self-cleaning Technologies -- 10.1 The Concept of Bioinspiration in Materials Engineering -- 10.1.1 Terms -- 10.1.2 Bioinspiration and Nanotechnology -- 10.2 Basics of Wetting -- 10.2.1 Contact Angle and Contact Angle Hysteresis -- 10.2.2 Contact Angle on Rough Surfaces -- 10.3 Self-cleaning Technologies -- 10.3.1 Fluid Transport -- 10.3.2 Biofouling -- 10.3.3 Water, Oil, and Stain Repellency -- 10.4 Summary -- References -- 11 Catechol-Based Biomimetic Functional Materials and their Applications -- 11.1 Introduction -- 11.2 Adhesives -- 11.2.1 General Purpose Adhesives -- 11.2.2 Adhesive Hydrogels for Biomedical Applications.

11.3 Functionalizable Platforms (Primers) on Macroscopic Surfaces -- 11.3.1 Polydopamine -- 11.3.1.1 Bio- and Biomedical Applications -- 11.3.1.2 Hydrophobic/Hydrophilic Coatings -- 11.3.2 Other Catechol-Containing Polymers -- 11.3.2.1 Antifouling Coatings -- 11.3.2.2 Antibacterial Coatings -- 11.3.2.3 Anti-corrosion -- 11.3.2.4 Hydrophobic/Hydrophilic Coatings -- 11.4 Micro-/Nanoscopic Surface Functionalization -- 11.4.1 Catechol-Modified Ferric NPs -- 11.4.1.1 Therapeutic Uses and Imaging -- 11.4.1.2 Biosensors -- 11.4.2 Functionalization of Nano- and Microstructures Other than Fe3O4 NPs -- 11.5 Functional Scaffolds -- 11.5.1 Oriental Lacquers -- 11.5.2 Melanin -- 11.5.3 Polydopamine-Based Nanoparticles -- 11.6 Chelating Materials/Siderophore-Like Materials -- 11.6.1 Therapeutic Uses and Imaging -- 11.6.2 Heavy Metal Scavenging -- 11.7 Materials for Chemo-/Biosensing -- 11.8 Electronic Devices -- 11.8.1 Molecular Electronics -- 11.8.2 Dye-Sensitized Solar Cells -- 11.8.3 Miscellaneous Devices -- References -- 12 Current Approaches to Designing Nanomaterials Inspired by Mussel Adhesive Proteins -- 12.1 Introduction -- 12.2 Mussel Adhesive Proteins and DOPA -- 12.2.1 Catechol Side Chain Chemistry -- 12.2.1.1 Reversible Physical Interactions -- 12.2.1.2 Oxidation-Mediated Crosslinking -- 12.3 Nanoparticle Stabilization -- 12.3.1 Grafting Catechol-Polymer Conjugate -- 12.3.2 Surface-Initiated Polymerization -- 12.3.3 Chemical Modification of Catechol Side Chain -- 12.4 Nanocomposite Materials -- 12.4.1 Nanocomposite Hydrogel -- 12.4.2 LbL Nanocomposite Films -- 12.4.3 Nanocomposite Fiber -- 12.4.4 Nanocomposite Rubber -- 12.5 Gecko and Mussel Dual Mimetic Adhesive -- 12.6 Polydopamine as a Multifunctional Anchor -- 12.6.1 Polydopamine-Mediated Hierarchical Surface Modification -- 12.6.2 Polydopamine-Coated Nanoparticles for Therapeutic Applications.

12.7 Summary and Future Outlook -- Acknowledgment -- References -- Part III: Bioinspired Materials - Bioinspired Materials for Biomedical Applications -- 13 Functional Gradients in Biological Composites -- 13.1 Introduction -- 13.2 Chemical Gradient -- 13.3 Hydration Gradient -- 13.4 Mineral Gradient -- 13.5 Texture Gradient -- 13.6 Porosity Gradient -- 13.7 Conclusions -- References -- 14 Novel Bioinspired Phospholipid Polymer Biomaterials for Nanobioengineering -- 14.1 Introduction -- 14.2 Molecular Design of an Artificial Cell Membrane Surface -- 14.3 Polymer Nanoparticles System with an Artificial Cell Membrane Structure -- 14.3.1 Preparation of Polymer Nanoparticles with an Artificial Cell Membrane Structure -- 14.3.2 Functionality of Biomolecules Immobilized on an Artificial Cell Membrane Surface -- 14.3.3 Multiple Functions of the Artificial Cell Membrane Structure -- 14.4 Nanomaterials Entrapped in the Polymeric Nanoparticles with an Artificial Cell Membrane -- 14.4.1 Surface Modification of Quantum Dots (QDs) with Phospholipid Polymers -- 14.4.2 Encapsulation of QDs in the Polymeric Nanoparticles Covered with Artificial Cell Membrane -- 14.4.3 In-Cell Performance of Polymeric Nanoparticles Covered with Artificial Cell Membrane -- 14.5 Future Perspectives -- List of Abbreviations -- References -- 15 Bioinspired Functionalized Nanoparticles as Tools for Detection, Quantification and Targeting of Biomolecules -- 15.1 Introduction -- 15.2 Bioinspired Functionalized Nanoparticles -- 15.2.1 Bioinspired Probes and Nanoparticle Functionalization -- 15.3 Biomedical Applications -- 15.3.1 In Vitro Diagnostics Using Nanoparticles -- 15.3.1.1 Detection of Biomolecules -- 15.3.1.2 Detection of Tumor Cells: Bioimaging -- 15.3.1.3 Separation and Purification of Biological Molecules and Cells -- 15.3.1.4 Biodetection of Pathogens.

15.4 Therapeutics Applications of Nanoparticles.
Abstract:
A comprehensive overview of nanomaterials that are inspired by or targeted at biology, including some of the latest breakthrough research. Throughout, valuable contributions from top-level scientists illustrate how bionanomaterials could lead to novel devices or structures with unique properties. The first and second part cover the most relevant synthetic and bioinspired nanomaterials, including surfaces with extreme wettability properties, functional materials with improved adhesion or structural and functional systems based on the complex and hierarchical organization of natural composites. These lessons from nature are explored in the last section where bioinspired materials are proposed for biomedical applications, showing their potential for future applications in drug delivery, theragnosis, and regenerative medicine. A navigational guide aimed at advanced and specialist readers, while equally relevant for readers in research, academia or private companies focused on high added-value contributions. Young researchers will also find this an indispensable guide in choosing or continuing to work in this stimulating area, which involves a wide range of disciplines, including chemistry, physics, materials science and engineering, biology, and medicine.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: