Cover image for QUANTUM PROCESSES.
QUANTUM PROCESSES.
Title:
QUANTUM PROCESSES.
Author:
Schommers, Wolfram.
ISBN:
9789812796578
Personal Author:
Physical Description:
1 online resource (420 pages)
Contents:
Contents -- Foreword -- 1. Conventional Quantum Theory -- 1.1. Classical Description -- 1.2. Schrödinger's Equations -- 1.2.1. Operator Treatment of Schrödinger's Equation -- 1.2.2. Momentum Representation -- 1.3. Uncertainty Relations -- 1.4. Individuals -- Remark -- 1.5. Conclusion -- 1.6. Aspects -- 1.6.1. The Principle of Complementarity -- 1.6.2. Objectivity -- 1.7. Remarks on the Superposition Principle -- 1.8. Basic New Experiments -- 1.8.1. General Remarks -- 1.8.2. Conclusion -- 2. Projection Theory -- 2.1. Preliminary Remarks -- 2.2. The Projection Principle -- 2.2.1. The Elements of Space and Time -- 2.2.2. Relationship between Matter and Space-Time -- 2.2.3. Two Relevant Features -- Feature 1 -- Feature 2 -- Remarks concerning feature 1 -- Remarks concerning feature 2 -- 2.2.4. Two Kinds of "Objects" -- 2.2.5. Perception Processes -- 2.2.6. Inside World and Outside World -- 2.2.7. The Influence of Evolution -- 2.2.8. Information in the Picture versus Information in Basic Reality (Outside Reality) -- 2.2.9. Other Biological Systems -- 2.2.10. Summary -- 2.3. Projections -- 2.3.1. Principal Remarks -- 2.3.2. Mach's Principle -- 2.3.3. Conclusion -- 2.3.4. Other Spaces -- 2.3.4.1. Fourier-space -- 2.3.4.2. The influence of Planck's constant -- 2.3.4.3. Reality and its picture -- 2.3.4.4. Remark -- 2.3.5. Basic Properties -- 2.3.5.1. Operators -- 2.3.5.2. Conclusion -- 2.3.6. Basic Transformation Effects -- 2.3.6.1. Particles -- 2.3.6.2. Role of time t -- 2.3.6.3. Non-local effects -- 2.3.6.4. Conclusion -- Remark -- 2.3.7. Operator Equations -- 2.3.7.1. Determination of (r, t) and (p, E) -- 2.3.7.2. Remarks -- 2.3.7.3. Space-specific formulation -- 2.3.7.4. Discussion concerning equations (2.35) and (2.50) -- Comparison with Schrödinger's equation -- (r, E)-space representation -- 2.3.7.5. Other representations.

2.3.7.6. Superposition principle -- The general case -- Stationary systems -- Conclusion -- 2.3.8. Processes -- 2.3.8.1. General remarks -- 2.3.8.2. Description of properties and appearances -- 2.3.8.3. The meaning of the wave function -- 2.3.8.4. Properties of probability distributions -- 2.3.8.5. Does god play dice? -- 2.3.9. Time -- 2.3.9.1. Reference time and selection processes -- Principal remarks -- Introduction of the reference system -- 2.3.9.2. Structure of reference time -- 2.3.9.3. Selections -- Convolution integral -- Two types of time variables -- Rectangular form for the reference time distribution -- Effect of motion -- 2.3.9.4. Information inside, information outside -- 2.3.9.5. Reality outside -- 2.3.9.6. Constancy phenomena -- 2.3.9.7. Schrödinger's equation and its limitations -- Derivation of Schrödinger's equation from the principles of projection theory -- Space-time information -- Information in connection with usual quantum theory -- Summary -- 2.3.9.8. Real situation -- General remarks -- Aspects -- 2.3.9.9. -Dependent systems -- 2.3.9.10. Some additional remarks -- 2.3.9.11. Uncertainty relation for time and energy -- 2.3.9.12. Time within special theory of relativity -- Block universe -- Feynman diagrams -- 2.4. Summary -- 3. Free, Non-interacting Systems (Particles) -- 3.1. General Remarks -- Remark -- 3.2. The Behaviour of the Basic Equations -- 3.2.1. The Case f (p , E ) = -- 3.2.2. On the Relationship Between p and E -- 3.2.3. The Case f (p , E ) -- 3.2.4. Conclusion -- 3.3. Classical and Quantum-Theoretical Elements -- 3.4. Behaviour of the Wave Function in (r, t )-Space and (p, E)-Space -- Remark -- 3.5. Probability Considerations in Connection with (p , E ) -- 3.6. Normalization Condition -- 3.7. Mean Values for the Momentum and the Energy -- Conclusion -- 3.8. The p, E-Pool.

3.9. Free, Elementary Systems do not Exist -- 3.10. No Equation for the Determination of the Wave Function (p , E ) -- 3.10.1. Additional Physically Relevant Conditions? -- 3.10.2. Multi-valuedness of the Wave Function (p , E ) -- 3.10.3. Existence and Non-Existence -- 3.10.4. Summary -- 3.11. Principle of Usefulness -- 3.12. Further General Remarks -- 3.13. Rest Mass Effect -- 3.14. Summary -- Appendix 3.A. -- Free System within Usual Quantum Theory -- 3.A.1. Superposition Ansatz -- 3.A.2. Mean Momentum for a Free System -- 3.A.3. Usual Quantum Theory and Projection Theory -- Remark -- Appendix 3.B. -- Appendix 3.C. -- Appendix 3.D. -- The Stationary Case -- 3.D.1. Definition -- 3.D.2. Relevant Properties -- 3.D.3. The Behaviour of the Wave Functions -- 3.D.3.1. Singularities -- 3.D.3.2. The probability argument -- 3.D.3.3. More details concerning the potential V (x, y, z) -- 3.D.3.4. Mean value for the energy -- 3.D.3.5. Normalization condition -- 3.D.4. Stationary Systems do not Exist -- 3.D.5. Final Remarks -- Appendix 3.E. -- Dependence of Mass on Velocity -- 4. Interactions -- Preliminary Remarks -- 4.1. Interactions within Projection Theory -- 4.2. What does Interaction Mean within Projection Theory? -- 4.2.1. Relationships -- 4.2.2. Fourier-Effects -- 4.3. How Basic is the Notion "Interaction"? -- 4.3.1. Classical Force Laws -- 1. "Action-at-a-distance" -- 2. Proximity effect -- 4.3.2. Equivalent Conceptions -- 4.3.3. Further Remarks -- 4.3.4. Remarks Concerning Quantum Field Theory and the Theory of Strings (Branes) -- 4.3.5. Delocalised Systems in (p, E)-Space -- 4.3.6. Summary -- 4.4. Description of Interactions within Projection Theory: Principal Remarks -- 4.4.1. Space-Time Limiting Interactions -- 4.4.2. Mutual (Distance-Dependent) Interactions -- General remark.

4.4.3. Specific Treatment in Connection with the Exchange of Momentum and Energy -- Conventional physics -- Projection theory -- 4.4.4. The p, E-Concert -- 4.4.5. Individual Processes -- 4.4.6. Analogy to Conventional Physics -- 4.4.7. Total Momentum and Total Energy -- 4.5. Pair Distributions -- 4.5.1. Information About the Interaction -- 4.5.2. Collective Effects in Connection with (p, E) -- Dependency of the number of subsystems -- Interactions with past and future events -- 4.5.3. Analysis in (r, t )-Space -- 4.5.4. Example for N = 4 -- 4.5.5. Further Discussions -- 4.6. Basic Equations -- 4.6.1. The Main Features -- Analysis in (p, E)-space -- Analysis in (r, t )-space -- Determination of the total potential energy -- Remark -- 4.6.2. Some Additional Statements -- A brief summary concerning p, E-fluctuations -- Further remarks -- System with two subsystems -- 4.6.3. Classical Formulation -- Relationships -- The situation without initial conditions -- Situation in projection theory -- What does classical mean in projection theory? -- 4.6.4. Introduction of Pair Potentials for Certain Configurations -- Discussion -- System with two subsystems -- Systems with two types of subsystems or more -- 4.6.5. Interaction Effects -- Remark -- 4.7. Energy Levels -- 4.7.1. Treatment of the Problem -- 4.7.2. Specific Properties -- 4.7.3. Conditional Wave Functions -- 4.7.4. E -Fluctuations -- General remarks -- The E -process -- 1. Energy shift -- 2. Specific interaction mechanisms -- 3. Discussion -- 4. Conditional wave functions for φ(Eα) -- 4.7.5. Extension to N Subsystems -- 4.7.6. Summary -- 4.8. Distance-Independent Interactions -- 4.8.1. Principal Remarks -- 4.8.2. Some Minor Changes -- 4.8.3. Some Basic Features of Distance-Independent Interactions -- 4.8.4. Absolute Space-Time Positions -- 4.8.5. Arbitrary Jumps -- Remark.

4.8.6. Effective Velocities -- Remark -- 4.8.7. Space-Effects -- Conventional physics -- Projection theory -- Conclusion -- 4.8.8. Arbitrary Jumps and p, E-States -- Motion relative to nothing -- Remarks in connection with Newton's theory -- 4.8.9. Resting and Moving Frames -- 4.8.10. Arbitrary Jumps within Single Systems -- Situation within projection theory -- 1. Measurement at time -- 2. Measurement at time > -- Situation within usual quantum theory -- Conclusion -- 4.9. The Meaning of the Potential Functions -- 4.9.1. Introduction of a Potential Function in the Case of Distance-Independent Interactions (Form Interactions) -- 4.9.2. Interaction within Conventional Physics -- 4.9.3. Interaction Potentials are Auxiliary Elements -- 4.9.4. Conventional Physics: What Mechanism is Behind Interaction? -- 4.9.5. "Gravity . . . an Occult Quality" -- 4.9.6. Phenomena in Usual Quantum Theory -- 4.9.7. Summary -- 4.10. Further Basic Features -- 4.10.1. Can Systems be Elementary in Character? -- 4.10.2. Self-Creating Interaction Processes -- 4.11. Absolute Space-Time Conceptions -- 4.11.1. Mach's Principle -- 4.11.2. The Effect of Inertia within Newton's Theory -- 4.11.3. Mach's Principle and Theory of Relativity -- Special theory of relativity -- General theory of relativity -- 1. De Sitter's Solution for a Lone Body -- 2. Empty Space within General Theory of Relativity -- 3. Gödel's Solution -- Conclusion -- Further comments -- 4.11.4. Final Remarks -- 4.12. Relativistic Effects -- 4.12.1. General Remarks -- 4.12.2. Frames of Reference within Projection Theory -- 4.12.3. Transformation Formulas -- 4.12.4. Arbitrary Jumps of the Entire Complex in Space-Time -- Remark -- 4.13. Hierarchy of the Parts in a Part -- 4.13.1. Conventional Physics -- 4.13.2. Is this Principle Realizable within Projection Theory? -- 4.13.2.1. Pictures and p, E-fluctuations.

4.13.2.2. No static building blocks.
Abstract:
Space and time are probably the most important elements in physics. Within the memory of man, all essential things are represented within the frame of space-time pictures. This is obviously the most basic information. What can we say about space and time? It is normally assumed that the space is a container filled with matter and that the time is just that which we measure with our clocks. However, there are some reasons to take another standpoint and to consider this container-conception as unrealistic, as prejudice so to say. Already the philosopher Immanuel Kant pointed on this serious problem. In this monograph, the author discusses the so-called projection theory. In contrast to the container-conception (reality is embedded in space and time), within projection theory the physical reality is projected onto space and time and quantum processes are of particular relevance. Like Whitehead and Bergson, the author argues for the primacy of process. One of the most interesting results is that projection theory automatically leads to a new aspect for the notion "time". Here we have not only the time of conventional physics, which is exclusively treated as an external parameter, but we obtain within projection theory a system-specific time. Just this system-specific time might be of fundamental importance in the future description of physical systems. For example, the self-assembly of nano-systems could lead to predictions that are even not thinkable within usual physics. Also in connection with cosmology the projection principle must inevitably lead to fundamentally new statements.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: