Cover image for Optics : Principles and Applications.
Optics : Principles and Applications.
Title:
Optics : Principles and Applications.
Author:
Sharma, Kailash K.
ISBN:
9780080463919
Personal Author:
Physical Description:
1 online resource (657 pages)
Contents:
Front cover -- Title page -- Copyright page -- Table of contents -- Preface -- Acknowledgements -- 1 Light Waves -- 1.1 INTRODUCTION -- 1.2 MAXWELL'S EQUATIONS -- 1.3 THE WAVE EQUATION -- 1.3.1 Plane Wave Solution -- 1.3.2 Spherical and Cylindrical Wave Solutions -- 1.3.3 Beam-Like Solutions -- 1.4 HOMOGENEOUS AND INHOMOGENEOUS WAVES -- 1.5 ENERGY DENSITY AND POYNTING VECTOR -- 1.6 BOUNDARY CONDITIONS -- 1.6.1 Continuity of the Normal Components -- 1.6.2 Continuity of the Tangential Components -- 1.7 REFLECTION AND TRANSMISSION AT A BOUNDARY -- 1.7.1 External Reflections -- 1.7.1.1 Brewster Angle -- 1.7.2 Reflectance and Transmittance -- 1.7.3 Internal Reflections -- 1.7.3.1 Fresnel Rhomb -- 1.7.4 Frustrated Total Internal Reflection -- 1.7.5 Reflection from a Metallic Surface -- 1.8 PASSAGE OF LIGHT THROUGH A PRISM -- 1.9 DISPERSION -- 1.9.1 Dispersion in Dilute Gases -- 1.9.2 Dispersion in Dense Media -- 1.9.3 Group and Signal Velocities -- 1.10 PROPAGATION OF LIGHT IN ANISOTROPIC MEDIA -- 1.10.1 Fresnel Equation -- 1.10.2 Geometrical Constructions -- 1.10.2.1 Index Ellipsoid -- 1.10.2.2 Normal Surface -- 1.10.3 Uniaxial Crystals -- 1.10.4 Biaxial Crystals -- 1.10.5 Double Refraction -- 1.10.6 Polarizing Prisms -- 1.11 REFERENCES -- 1.12 PROBLEMS -- 2 Coherence of Light Waves -- 2.1 POLYCHROMATIC LIGHT -- 2.1.1 Quasi-monochromatic Light -- 2.2 PARTIALLY COHERENT LIGHT -- 2.2.1 Spatial and Temporal Coherence -- 2.3 COMPLEX COHERENCE FUNCTIONS -- 2.3.1 Stationary and Time-Averaged Fields -- 2.3.2 Intensity of Polychromatic Light -- 2.4 SELF COHERENCE -- 2.4.1 Complex Degree of Self Coherence -- 2.4.2 Fourier Transform Spectroscopy -- 2.5 MUTUAL COHERENCE -- 2.5.1 Complex Degree of Mutual Coherence -- 2.5.2 Coherence of Light from an Extended Source -- 2.5.3 Michelson Stellar Interferometer -- 2.6 VAN CITTERT-ZERNIKE THEOREM.

2.6.1 Incoherent Quasi-monochromatic Source of Circular Cross-Section -- 2.6.2 Area of Coherence -- 2.7 INTENSITY CORRELATIONS -- 2.7.1 Hanbury Brown and Twiss Experiment -- 2.7.2 Photon Statistics -- 2.8 REFERENCES -- 2.9 PROBLEMS -- 3 Polarization of Light Waves -- 3.1 STATES OF POLARIZATION -- 3.1.1 Linear Polarization -- 3.1.2 Elliptical and Circular Polarizations -- 3.1.3 Helicity of Light Waves -- 3.2 THE POLARIZATION ELLIPSE -- 3.3 MATRIX REPRESENTATION OF POLARIZATION STATES -- 3.3.1 The Jones Vectors -- 3.3.1.1 Linearly Polarized Light -- 3.3.1.2 Circularly Polarized Light -- 3.3.1.3 Elliptically Polarized Light -- 3.3.1.4 Orthogonality of Jones Vectors -- 3.3.2 Jones Matrices for Linear Optical Devices -- 3.3.2.1 Linear Polarizers -- 3.3.2.2 Phase Retarders -- 3.3.2.3 Quarter-Wave Plate -- 3.3.2.4 Half-Wave Plate -- 3.4 THE STOKES PARAMETERS -- 3.4.1 Monochromatic Light -- 3.4.2 Quasi-monochromatic Light -- 3.4.3 Completely Unpolarized Light -- 3.4.4 Mixture of Mutually Incoherent Light Fields -- 3.4.5 Geometrical Interpretation of Stokes Parameters -- 3.5 THE POINCARÉ SPHERE -- 3.6 MUELLER MATRICES -- 3.6.1 Linear Polarizer -- 3.6.2 Phase Retarder -- 3.7 THE COHERENCY MATRIX -- 3.8 PANCHARATNAM THEOREM -- 3.9 REFERENCES -- 3.10 PROBLEMS -- 4 Geometrical Optics -- 4.1 INTRODUCTION -- 4.1.1 Paraxial Approximation -- 4.2 RAY MATRIX APPROACH TO GAUSSIAN OPTICS -- 4.2.1 The Lens Matrix -- 4.2.2 Cardinal Points of a Lens -- 4.2.3 Ray Transformation between Principal Planes -- 4.2.4 Ray Matrix for Image Formation -- 4.2.4.1 Object-Image Distance Relation -- 4.2.5 Ray Tracing -- 4.2.6 Ray Matrix for Reflection -- 4.3 OPTICAL SYSTEMS -- 4.3.1 Apertures and Stops -- 4.3.2 Single Lens Magnifier -- 4.3.3 Single Lens Camera -- 4.3.4 Two-Lens Optical Systems -- 4.3.5 The Microscope -- 4.3.6 The Telescope -- 4.3.7 Telephoto Lens.

4.4 OPTICS OF A LASER CAVITY -- 4.5 OPTICS OF THE HUMAN EYE -- 4.5.1 Defects of the Human Eye -- 4.6 CYLINDRICAL LENS -- 4.7 REFERENCES -- 4.8 PROBLEMS -- 5 Lens Aberrations -- 5.1 STIGMATIC IMAGE -- 5.2 APLANATIC POINTS -- 5.3 IMAGE FORMATION WITH NON-PARAXIAL RAYS -- 5.3.1 Tangential and Sagittal Planes -- 5.4 WAVEFRONT ABERRATION FUNCTION -- 5.4.1 Ray Deviations -- 5.4.2 Focusing Errors -- 5.5 PRIMARY ABERRATIONS -- 5.5.1 Spherical Aberration -- 5.5.1.1 Spherical Aberration of a Thin Lens -- 5.5.2 Coma -- 5.5.2.1 The Sine Condition -- 5.5.3 Astigmatism -- 5.5.4 Field Curvature -- 5.5.5 Distortion -- 5.6 CHROMATIC ABERRATION -- 5.7 REFERENCES -- 5.8 PROBLEMS -- 6 Interference of Light Waves -- 6.1 INTERFERENCE -- 6.2 TWO-WAVE INTERFERENCE -- 6.2.1 Interference by Division of Wavefront -- 6.2.2 Interference by Division of Amplitude -- 6.2.3 Testing Flatness of Surfaces -- 6.3 INTERFERENCE WITH EXTENDED SOURCES -- 6.3.1 Haidinger Fringes -- 6.3.2 Fizeau Fringes -- 6.3.3 Newton's Rings -- 6.3.4 Straight Fringes -- 6.4 TWO-WAVE INTERFEROMETERS -- 6.4.1 Michelson Interferometer -- 6.4.1.1 Alignment of the Michelson Interferometer -- 6.4.1.2 White Light Fringes -- 6.4.1.3 Calibration of the Standard Meter -- 6.4.2 Twyman-Green Interferometer -- 6.4.3 Mach-Zehnder Interferometer -- 6.4.4 Sagnac Interferometer -- 6.5 MULTI-WAVE INTERFERENCE -- 6.5.1 Intensity Distribution in Multi-wave Interference -- 6.6 FABRY-PEROT INTERFEROMETER -- 6.6.1 Widths of Transmission Peaks -- 6.6.2 Fabry-Perot Interferometer as a Spectrometer -- 6.6.3 Free Spectral Range -- 6.6.4 Spectral Resolution -- 6.6.4.1 Fabry-Perot Interferometer as an Optical Filter -- 6.7 LUMMER-GEHRCKE PLATE -- 6.8 THIN OPTICAL COATINGS -- 6.8.1 Single Layer Optical Coatings -- 6.8.2 Multi-layer Optical Coatings -- 6.8.2.1 Extension to Multi-layer Coatings -- 6.8.3 Anti-Reflection Coatings.

6.8.4 High Reflectance Coatings -- 6.8.5 Narrow Band Interference Filters -- 6.9 REFERENCES -- 6.10 PROBLEMS -- 7 Diffraction of Light -- 7.1 INTRODUCTION -- 7.2 HUYGENS' PRINCIPLE -- 7.3 HUYGENS-FRESNEL THEORY -- 7.4 KIRCHHOFF'S DIFFRACTION THEORY -- 7.4.1 Kirchhoff's Boundary Conditions -- 7.4.2 Fresnel-Kirchhoff Diffraction Formula -- 7.5 REGIMES OF DIFFRACTION -- 7.6 BABINET'S PRINCIPLE -- 7.7 REFERENCES -- 7.8 PROBLEMS -- 8 Fresnel Diffraction -- 8.1 NEAR-FIELD DIFFRACTION -- 8.2 RECTANGULAR APERTURE -- 8.2.1 The Cornu Spiral -- 8.2.2 Narrow Slit -- 8.2.2.1 Intensity Variations in the Geometrically Bright Region -- 8.2.3 Straight Edge -- 8.2.4 Rectangular Obstacle -- 8.3 CIRCULAR APERTURE -- 8.3.1 Irradiance at Off-Axial Points -- 8.3.2 The Arago Bright Spot -- 8.4 THE ZONE PLATE -- 8.5 PIN-HOLE CAMERA -- 8.6 REFERENCES -- 8.7 PROBLEMS -- 9 The Fourier Transform -- 9.1 INTRODUCTION -- 9.2 THE FOURIER SERIES -- 9.2.1 The Rectangle Wave -- 9.3 FOURIER TRANSFORMS IN ONE DIMENSION -- 9.3.1 Fourier Transforms of Simple Functions -- 9.3.1.1 Rectangle Function -- 9.3.1.2 The Dirac delta Function -- 9.3.1.3 Damped Oscillator -- 9.3.1.4 Truncated Oscillator -- 9.4 FOURIER TRANSFORMS IN TWO DIMENSIONS -- 9.4.1 Properties of the Fourier Transforms -- 9.4.1.1 Symmetry Properties -- 9.4.1.2 Scaling Property -- 9.4.1.3 Shifting Property -- 9.4.1.4 Linearity Property -- 9.4.1.5 Parseval's Theorem -- 9.5 CONVOLUTION OPERATION -- 9.5.1 Convolution as the Area of Products -- 9.5.2 Convolution and Impulse Response -- 9.5.3 Convolution Theorems -- 9.6 CONVOLUTION OF DISCRETE FUNCTIONS -- 9.7 CORRELATION OF FUNCTIONS -- 9.7.1 Correlation Theorems -- 9.7.2 The Wiener-Khinchin Theorem -- 9.8 REFERENCES -- 9.9 PROBLEMS -- 10 Fraunhofer Diffraction -- 10.1 FAR-FIELD DIFFRACTION -- 10.1.1 Fourier Decomposition of Aperture Function -- 10.1.2 Diffraction with a Lens.

10.2 DIFFRACTING APERTURES -- 10.2.1 Rectangular Aperture -- 10.2.2 Infinitely Long Slit -- 10.2.3 Circular Aperture -- 10.3 APODIZATION -- 10.4 THE ARRAY THEOREM -- 10.4.1 Two-Slit Aperture -- 10.4.2 Three-Slit Aperture -- 10.5 THE DIFFRACTION GRATING -- 10.5.1 Grating Dispersion -- 10.5.2 Blazed Grating -- 10.5.3 Resolving Power of a Grating -- 10.5.4 Free Spectral Range -- 10.6 IRREGULARLY POSITIONED APERTURES -- 10.7 SINUSOIDAL GRATING -- 10.8 TWO PIN-HOLES -- 10.9 REFERENCES -- 10.10 PROBLEMS -- 11 Image Formation and Optical Processing -- 11.1 INTRODUCTION -- 11.2 DIFFRACTION THEORY OF IMAGE FORMATION -- 11.2.1 Image Formation with one Lens -- 11.2.1.1 Lens of Large Aperture -- 11.2.1.2 Lens of Finite Aperture -- 11.2.1.3 Coherent Impulse Response Function -- 11.2.2 Image Formation with Two Lenses -- 11.3 COHERENT IMAGE PROCESSING -- 11.3.1 Spatial Frequency Filtering -- 11.3.1.1 Low Pass Filter to remove Laser Beam Distortion -- 11.3.1.2 High Pass Filter for Dark Ground Imaging -- 11.3.2 Filters for Imaging Phase Objects -- 11.3.3 Complex Filter -- 11.3.4 Matched Filter -- 11.4 COHERENT OPTICAL PROCESSING -- 11.5 INCOHERENT IMAGE FORMATION -- 11.6 INCOHERENT OPTICAL PROCESSING -- 11.7 RESOLVING POWER OF IMAGE FORMING SYSTEMS -- 11.7.1 Incoherent Object Illumination -- 11.7.2 Coherent Object Illumination -- 11.8 REFERENCES -- 11.9 PROBLEMS -- 12 Transfer Functions -- 12.1 INTRODUCTION -- 12.2 ISOPLANATISM -- 12.3 COHERENT TRANSFER FUNCTION -- 12.4 OPTICAL TRANSFER FUNCTION -- 12.5 OTF OF A DIFFRACTION-LIMITED OPTICAL SYSTEM -- 12.6 TRANSFER FUNCTIONS OF ABERRATED OPTICAL SYSTEMS -- 12.6.1 OTF of a Defocused Optical System -- 12.7 IMAGING SINUSOIDAL OBJECT MODULATION -- 12.8 MEASUREMENT OF OTF -- 12.9 REFERENCES -- 12.10 PROBLEMS -- 13 Holography -- 13.1 INTRODUCTION -- 13.2 ON-AXIS HOLOGRAPHY -- 13.2.1 Hologram Recording.

13.2.2 Wavefront Reconstruction.
Abstract:
Optical technology is essential to communications and medical technology. K.K. Sharma has written a comprehensive volume on optics. Beginning with introductory ideas and equations, Sharma takes the reader through the world of optics detailing problems encountered, advanced subjects, and actual applications. Elegantly written, this book rigorously examines optics with over 300 illustrations and several problems in each chapter. The book begins with light propagation in anisotropic media considered much later in most books. Sharma has started with this because it provides a more general and beautiful example of light propagation. Nearly one third of the book deals with applications of optics. This simple idea of merging the sometimes overwhelming and dry subject of optics with real world applications will create better future engineers. It will make 'optics' jump off the page for readers and they will see it take shape in the world around them. In presenting optics practically, as well as theoretically, readers will come away not only with a complete knowledge base but a context in which to place it. FOR INSTRUCTORS: To obtain access to the solutions manual for this title simply register on our textbook website (textbooks.elsevier.com)and request access to the Electronics and Electrical Engineering subject area. Once approved (usually within one business day) you will be able to access all of the instructor-only materials through the "Instructor Manual" link on this book's academic web page at textbooks.elsevier.com. *Strong emphasis on applications to demonstrate the relevance of the theory *Includes chapter on problem solving of ray deviations, focusing errors, and distortion *Problems are included at the end of each chapter for thorough understanding of this dense subject matter.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: