Cover image for Physics - II : Theory and Experiments.
Physics - II : Theory and Experiments.
Title:
Physics - II : Theory and Experiments.
Author:
G.D., Ladiwala.
ISBN:
9788122434934
Personal Author:
Physical Description:
1 online resource (327 pages)
Contents:
Cover -- Preface -- Chapter 1 Applications of Schrodinger's Equation and Band Theory -- 1.1 Introduction -- 1.2 The Particle in a Three Dimensional Box -- 1.2.1 Degeneracy of Energy Levels -- 1.3 The Potential Barrier (Tunnel effect) -- 1.4 Theory of a-Decay -- 1.5 Sommerfeld's Free Electron Gas Model of Solids (Metals) -- 1.5.1 Postulates of Sommerfeld Model -- 1.5.2 Density of Energy States and Fermi Energy -- 1.5.3 The Fermi Distribution Function and Effect of Temperature on it -- 1.5.4 Mean Energy of Electron Gas at Absolute Zero -- 1.6 Band Theory of Solids -- 1.6.1 Classification of Solids -- Questions and Problems -- Chapter 2 Laser and Holography -- 2.1 Laser -- 2.1.1 Comparison of Laser Source with Ordinary Source -- 2.2 Absorption, Spontaneous Emission and Induced Emission of Radiation -- 2.3 Principle of Laser -- 2.3.1 Pumping and Population Inversion -- 2.3.2 Cavity Resonators and Shaping of a Beam (Operation of Laser) -- 2.4 The Helium-Neon Laser -- 2.5 Semiconductor Laser -- 2.5.1 Introduction -- 2.5.2 Theory of Semiconductor -- 2.5.3 Homojunction Laser -- 2.5.4 Construction -- 2.5.5 Principle of Operation -- 2.5.6 Heterojunction Laser -- 2.5.7 Double Heterostructure Laser -- 2.6 Applications of Laser -- 2.7 Characteristics of The Laser Light -- 2.8 Q-Switching -- 2.8.1 Principle of Q-Switching -- 2.8.2 Evolution of a Q-Switched Laser Pulse -- 2.8.3 Types of Q-Switching -- 2.8.4 Applications -- 2.9 Mode Locking -- 2.9.1 Longitudinal Modes of the Laser Cavity -- 2.9.2 Mode Locking Theory -- 2.9.3 Mode-Locking Methods -- 2.9.4 Application of Mode Locked Laser Output -- 2.10 Introduction -- 2.11 The Basic Principle of Holography -- 2.11.1 Obtaining a Hologram (Construction of Hologram -- 2.11.2 Viewing the object (Reconstruction of an image from Hologram) -- 2.12 Types of Holograms -- 2.13 Holography Versus Photography.

2.14 Basic Requirements of a Holographic Laboratory -- 2.15 Some Special Features of a Hologram -- 2.16 Applications of Holography -- 2.16.1 Holographic Interferometry -- 2.16.2 Holographic Microscopy -- 2.16.3 Acoustic Holography -- Questions and Problems -- Chapter 3 Coherence and Optical Fibres -- 3.1 Coherence -- 3.1.1 Spatial Coherence -- 3.1.2 Temporal Coherence -- 3.2 Detailed Concept of Temporal and Spatial Coherence -- 3.2.1 Temporal Coherence and Monochromaticity of the Source -- 3.2.2 Spatial Coherence and Size of the Source -- 3.3 Visibility as a Measure of Coherence -- 3.4 Optical Fibre -- 3.4.1 Importance of Optical Fibres -- 3.4.2 Structure of Optical Fibre -- 3.5 Propagation of Light Waves Through Fibre -- 3.5.1 Mechanism -- 3.5.2 Conditions -- 3.6 Types of Optical Fibre -- 3.6.1 Step Index (SI) Optical Fibre -- 3.6.2 Graded Index (GRIN) Optical Fibre -- 3.7 Acceptance Angle and Acceptance Cone of A Step Index Fibre -- 3.7.1 Numerical Aperture -- 3.7.2 V-Number -- 3.8 Applications of Optical Fibre -- 3.8.1 Optical Fibre Communication -- 3.8.2 Fibre optics in Medical Science -- Questions and Problems -- Chapter 4 Nuclear Radiation Detectors -- 4.1 Introduction -- 4.2 Gas Filled Detectors -- 4.3 Ionization Chamber -- 4.3.1 Advantages -- 4.3.2 Disadvantages -- 4.4 Proportional Counter -- 4.4.1 Construction -- 4.4.2 Operation -- 4.4.3 Gas Multiplication Factor -- 4.4.4 Advantages of Proportional Counter -- 4.4.5 Disadvantage of Proportional Counter -- 4.5 Geiger-Muller Counter -- 4.5.1 Construction -- 4.5.2 Operation -- 4.5.3 Quenching -- 4.5.4 Dead Time and Recovery Time -- 4.5.5 Main Features of a G.M. Counter -- 4.5.6 Precautions in using G.M. Tube -- 4.5.7 Comparison between Proportional Counter and G.M. Counter -- 4.6 Scintillation Detector -- 4.6.1 Introduction -- 4.6.2 Construction.

4.6.3 Advantages and Disadvantages of Scintillation Detectors -- Questions and Problems -- Chapter 5 Dielectric Materials -- 5.1 Dielectrics -- 5.2 Electric Dipole -- 5.3 Electric Dipole Moment -- 5.4 Dielectrics (Polar and Non-Polar) -- 5.5 Dielectric Constant -- 5.6 Dielectric Polarization -- 5.7 The Three Electric Vectors E,P and D -- 5.7.1 Relations between Field Vectors -- 5.8 Dielectrics in Alternating Fields -- 5.8.1 Ideal and Loss Dielectrics -- 5.8.2 Loss Angle and Loss Tangent -- 5.8.3 Power Loss in Dielectrics -- 5.9 Dielectric Breakdown and Dielectric Strength -- 5.9.1 Intrinsic Breakdown or Electronic Breakdown -- 5.9.2 Thermal Breakdown -- 5.9.3 Electromechanical Breakdown -- 5.9.4 Electrochemical Breakdown -- 5.9.5 Discharge Breakdown -- 5.10 Measurement of Dielectric Constant -- 5.10.1 Ballistic Galvanometer Method -- 5.10.2 Schering Bridge -- 5.10.3 Resonance Method -- Questions and Problems -- Chapter 6 Electrodynamics -- 6.1 Scalar and Vector Fields -- 6.1.1 Field -- 6.1.2 Scalar Field -- 6.1.3 Vector Field -- 6.2 Gradient of A Scalar Function -- 6.2.1 The Gradient of a Scalar Field in Rectangular Coordinates -- 6.3 Line Integral of A Vector Field -- 6.4 Flux of A Vector Field -- 6.5 Divergence of A Vector Field -- 6.5.1 Physical Meaning of Divergence of a Vector -- 6.6 Curl of A Vector Field -- 6.6.1 The Curl in Cartesian Coordinates -- 6.6.2 The Physical Meaning of the Curl of a Vector Field -- 6.7 Integral Theorems -- 6.7.1 Gauss's Divergence Theorem -- 6.7.2 Stoke's Theorem -- 6.8 Equation of Continuity -- 6.9 Maxwell's Displacement Current and Correction in Ampere's Law -- 6.9.1 Physical Interpretation of Displacement Current -- 6.10 Maxwell's Equations -- 6.11 Derivation of Maxwell's Equations -- 6.11.1 Maxwell's First Equation -- 6.11.2 Maxwell's Second Equation: -- 6.11.3 Maxwell's Third Equation:.

6.11.4 Maxwell's Fourth Equation: -- 6.11.5 Maxwell's Equations in Integral Form -- 6.11.6 Significance of Maxwell's Equations -- 6.11.7 Maxwell's Equations in Some Particular Cases -- 6.12 Boundary Conditions in Electrodynamics -- 6.13 Electromagnetic Waves in Free Space Wave Equations for Electric and Magnetic Field Vectors -- 6.13.1 Solution of Electromagnetic Wave Equation In Vacuum and Plane Electromagnetic Wave -- 6.14 Characteristics of Plane Electromagnetic Waves in Vacuum -- 6.15 Energy Density in Electromagnetic Field: Poynting Theorem and Poynting Vector -- 6.15.1 Definition of Poynting Vector -- 6.15.2 Poynting Vector and Energy Density -- 6.15.3 Units and Dimension P -- 6.15.4 Energy Density For An Electromagnetic Wave -- Questions and Problems -- Experiments -- 1. Sextant -- 2. Dispersive Power -- 3. Diffraction Grating -- 4. Magnetic Hysteresis -- 5. Charging & Discharging of A Condenser -- 6. High Resistance By Method of Leakage -- 7. Dielectric Constant of A Liquid -- 8. Characteristics of G.M. Counter -- 9. Absorption Coefficient of Lead Sheet -- 10. Resolving Power -- 11. Carey - Foster's Bridge -- Appendix A -- Appendix B -- Appendix C -- Index.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Added Author:
Electronic Access:
Click to View
Holds: Copies: