Cover image for Density Functional Theory : A Practical Introduction.
Density Functional Theory : A Practical Introduction.
Title:
Density Functional Theory : A Practical Introduction.
Author:
Sholl, David.
ISBN:
9780470447703
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (252 pages)
Contents:
DENSITY FUNCTIONAL THEORY -- CONTENTS -- Preface -- 1 What Is Density Functional Theory? -- 1.1 How to Approach This Book -- 1.2 Examples of DFT in Action -- 1.2.1 Ammonia Synthesis by Heterogeneous Catalysis -- 1.2.2 Embrittlement of Metals by Trace Impurities -- 1.2.3 Materials Properties for Modeling Planetary Formation -- 1.3 The Schrödinger Equation -- 1.4 Density Functional Theory-From Wave Functions to Electron Density -- 1.5 Exchange-Correlation Functional -- 1.6 The Quantum Chemistry Tourist -- 1.6.1 Localized and Spatially Extended Functions -- 1.6.2 Wave-Function-Based Methods -- 1.6.3 Hartree-Fock Method -- 1.6.4 Beyond Hartree-Fock -- 1.7 What Can DFT Not Do? -- 1.8 Density Functional Theory in Other Fields -- 1.9 How to Approach This Book (Revisited) -- References -- Further Reading -- 2 DFT Calculations for Simple Solids -- 2.1 Periodic Structures, Supercells, and Lattice Parameters -- 2.2 Face-Centered Cubic Materials -- 2.3 Hexagonal Close-Packed Materials -- 2.4 Crystal Structure Prediction -- 2.5 Phase Transformations -- Exercises -- Further Reading -- Appendix Calculation Details -- 3 Nuts and Bolts of DFT Calculations -- 3.1 Reciprocal Space and k Points -- 3.1.1 Plane Waves and the Brillouin Zone -- 3.1.2 Integrals in k Space -- 3.1.3 Choosing k Points in the Brillouin Zone -- 3.1.4 Metals-Special Cases in k Space -- 3.1.5 Summary of k Space -- 3.2 Energy Cutoffs -- 3.2.1 Pseudopotentials -- 3.3 Numerical Optimization -- 3.3.1 Optimization in One Dimension -- 3.3.2 Optimization in More than One Dimension -- 3.3.3 What Do I Really Need to Know about Optimization? -- 3.4 DFT Total Energies-An Iterative Optimization Problem -- 3.5 Geometry Optimization -- 3.5.1 Internal Degrees of Freedom -- 3.5.2 Geometry Optimization with Constrained Atoms -- 3.5.3 Optimizing Supercell Volume and Shape -- Exercises -- References.

Further Reading -- Appendix Calculation Details -- 4 DFT Calculations for Surfaces of Solids -- 4.1 Importance of Surfaces -- 4.2 Periodic Boundary Conditions and Slab Models -- 4.3 Choosing k Points for Surface Calculations -- 4.4 Classification of Surfaces by Miller Indices -- 4.5 Surface Relaxation -- 4.6 Calculation of Surface Energies -- 4.7 Symmetric and Asymmetric Slab Models -- 4.8 Surface Reconstruction -- 4.9 Adsorbates on Surfaces -- 4.9.1 Accuracy of Adsorption Energies -- 4.10 Effects of Surface Coverage -- Exercises -- References -- Further Reading -- Appendix Calculation Details -- 5 DFT Calculations of Vibrational Frequencies -- 5.1 Isolated Molecules -- 5.2 Vibrations of a Collection of Atoms -- 5.3 Molecules on Surfaces -- 5.4 Zero-Point Energies -- 5.5 Phonons and Delocalized Modes -- Exercises -- Reference -- Further Reading -- Appendix Calculation Details -- 6 Calculating Rates of Chemical Processes Using Transition State Theory -- 6.1 One-Dimensional Example -- 6.2 Multidimensional Transition State Theory -- 6.3 Finding Transition States -- 6.3.1 Elastic Band Method -- 6.3.2 Nudged Elastic Band Method -- 6.3.3 Initializing NEB Calculations -- 6.4 Finding the Right Transition States -- 6.5 Connecting Individual Rates to Overall Dynamics -- 6.6 Quantum Effects and Other Complications -- 6.6.1 High Temperatures/Low Barriers -- 6.6.2 Quantum Tunneling -- 6.6.3 Zero-Point Energies -- Exercises -- Reference -- Further Reading -- Appendix Calculation Details -- 7 Equilibrium Phase Diagrams from Ab Initio Thermodynamics -- 7.1 Stability of Bulk Metal Oxides -- 7.1.1 Examples Including Disorder-Configurational Entropy -- 7.2 Stability of Metal and Metal Oxide Surfaces -- 7.3 Multiple Chemical Potentials and Coupled Chemical Reactions -- Exercises -- References -- Further Reading -- Appendix Calculation Details.

8 Electronic Structure and Magnetic Properties -- 8.1 Electronic Density of States -- 8.2 Local Density of States and Atomic Charges -- 8.3 Magnetism -- Exercises -- Further Reading -- Appendix Calculation Details -- 9 Ab Initio Molecular Dynamics -- 9.1 Classical Molecular Dynamics -- 9.1.1 Molecular Dynamics with Constant Energy -- 9.1.2 Molecular Dynamics in the Canonical Ensemble -- 9.1.3 Practical Aspects of Classical Molecular Dynamics -- 9.2 Ab Initio Molecular Dynamics -- 9.3 Applications of Ab Initio Molecular Dynamics -- 9.3.1 Exploring Structurally Complex Materials: Liquids and Amorphous Phases -- 9.3.2 Exploring Complex Energy Surfaces -- Exercises -- Reference -- Further Reading -- Appendix Calculation Details -- 10 Accuracy and Methods beyond "Standard" Calculations -- 10.1 How Accurate Are DFT Calculations? -- 10.2 Choosing a Functional -- 10.3 Examples of Physical Accuracy -- 10.3.1 Benchmark Calculations for Molecular Systems-Energy and Geometry -- 10.3.2 Benchmark Calculations for Molecular Systems-Vibrational Frequencies -- 10.3.3 Crystal Structures and Cohesive Energies -- 10.3.4 Adsorption Energies and Bond Strengths -- 10.4 DFT+X Methods for Improved Treatment of Electron Correlation -- 10.4.1 Dispersion Interactions and DFT-D -- 10.4.2 Self-Interaction Error, Strongly Correlated Electron Systems, and DFT+U -- 10.5 Larger System Sizes with Linear Scaling Methods and Classical Force Fields -- 10.6 Conclusion -- References -- Further Reading -- Index.
Abstract:
David S. Sholl is a Professor of Chemical & Biomolecular Engineering at the Georgia Institute of Technology, where he holds the Michael Tennenbaum Family Chair and is a GRA Eminent Scholar in Energy Sustainability. Janice A. Steckel is a Physical Scientist at the U.S. Department of Energy, National Energy Technology Laboratory in Pittsburgh, Pennsylvania.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: