Cover image for Mathematical Programming : Theory and Methods.
Mathematical Programming : Theory and Methods.
Title:
Mathematical Programming : Theory and Methods.
Author:
Sinha, S. M.
ISBN:
9780080535937
Personal Author:
Physical Description:
1 online resource (589 pages)
Contents:
Front Cover -- Mathematical Programming: Theory and Methods -- Copyright Page -- Contents -- Chapter 1. Introduction -- 1.1 Background and Historical Sketch -- 1.2. Linear Programming -- 1.3. Illustrative Examples -- 1.4. Graphical Solutions -- 1.5. Nonlinear Programming -- PART 1: MATHEMATICAL FOUNDATIONS -- Chapter 2. Basic Theory of Sets and Functions -- 2.1. Sets -- 2.2. Vectors -- 2.3. Topological Properties of Rn -- 2.4. Sequences and Subsequences -- 2.5. Mappings and Functions -- 2.6. Continuous Functions -- 2.7. Infimum and Supremum of Functions -- 2.8. Minima and Maxima of Functions -- 2.9. Differentiable Functions -- Chapter 3. Vector Spaces -- 3.1. Fields -- 3.2. Vector Spaces -- 3.3. Subspaces -- 3.4. Linear Dependence -- 3.5. Basis and Dimension -- 3.6. Inner Product Spaces -- Chapter 4. Matrices and Determinants -- 4.1. Matrices -- 4.2. Relations and Operations -- 4.3. Partitioning of Matrices -- 4.4. Rank of a Matrix -- 4.5. Determinants -- 4.6. Properties of Determinants -- 4.7. Minors and Cofactors -- 4.8. Determinants and Rank -- 4.9. The Inverse Matrix -- Chapter 5. Linear Transformations and Rank -- 5.1. Linear Transformations and Rank -- 5.2. Product of Linear Transformations -- 5.3. Elementary Transformations -- 5.4. Echelon Matrices and Rank -- Chapter 6. Quadratic Forms and Eigenvalue Problems -- 6.1. Quadratic Forms -- 6.2. Definite Quadratic Forms -- 6.3. Characteristic Vectors and Characteristic Values -- Chapter 7. Systems of Linear Equations and Linear Inequalities -- 7.1. Linear Equations -- 7.2. Existence Theorems for Systems of Linear Equations -- 7.3. Basic Solutions and Degeneracy -- 7.4. Theorems of the Alternative -- Chapter 8. Convex Sets and Convex Cones -- 8.1. Introduction and Preliminary Definitions -- 8.2. Convex Sets and their Properties -- 8.3. Convex Hulls -- 8.4. Separation and Support of Convex Sets.

8.5. Convex Polytopes and Polyhedra -- 8.6. Convex Cones -- Chapter 9. Convex and Concave Functions -- 9.1. Definitions and Basic Properties -- 9.2. Differentiable Convex Functions -- 9.3. Generalization of Convex Functions -- 9.4. Exercises -- PART 2: LINEAR PROGRAMMING -- Chapter 10. Linear Programming Problems -- 10.1. The General Problem -- 10.2. Equivalent Formulations -- 10.3. Definitions and Terminologies -- 10.4. Basic Solutions of Linear Programs -- 10.5. Fundamental Properties of Linear Programs -- 10.6. Exercises -- Chapter 11. Simplex Method: Theory and Computation -- 11.1. Introduction -- 11.2. Theory of the Simplex Method -- 11.3. Method of Computation: The Simplex Algorithm -- 11.4. The Simplex Tableau -- 11.5. Replacement Operation -- 11.6. Example -- 11.7. Exercises -- Chapter 12. Simplex Method: Initial Basic Feasible Solution -- 12.1. Introduction: Artificial Variable Techniques -- 12.2. The Two-Phase Method [ 117] -- 12.3. Examples -- 12.4. The Method of Penalties [71 ] -- 12.5. Examples: Penalty Method -- 12.6. Inconsistency and Redundancy -- 12.7. Exercises -- Chapter 13. Degeneracy in Linear Programming -- 13.1. Introduction -- 13.2. Charnes' Perturbation Method -- 13.3. Example -- 13.4. Exercises -- Chapter 14. The Revised Simplex Method -- 14.1. Introduction -- 14.2. Outline of the Procedure -- 14.3. Example -- 14.4. Exercises -- Chapter 15. Duality in Linear Programming -- 15.1. -- 15.2. Cannonical Dual Programs and Duality Theorems -- 15.3. Equivalent Dual Forms -- 15.4. Other Important Results -- 15.5. Lagrange Multipliers and Duality -- 15.6. Duality in the Simplex Method -- 15.7. Example -- 15.8. Applications -- 15.9. Economic Interpretation of Duality -- 15.9. Exercises -- Chapter 16. Variants of the Simplex Method -- 16.1. Introduction -- 16.2. The Dual Simplex Method -- 16:3. The Dual Simplex Algorithm.

16.4. Initial Dual - Feasible Basic Solution -- 16.5. Example -- 16.6. The Primal - Dual Algorithm -- 16.7. Summary of the Primal-Dual Algorithm -- 16.8. Example -- 16.9. The Initial Solution to the Dual Problem: The Artificial Constraint Technique -- 16.9. Exercises -- Chapter 17. Post-Optimization Problems: Sensitivity Analysis and Parametric Programming -- 17.1. Introduction -- 17.2. Sensitivity Analysis -- 17.3. Changes in the Cost Vector -- 17.4. Changes in the Requirement Vector -- 17.5. Changes in the Elements of the Technology Matrix -- 10.6. Addition of a Constraint -- 17.7. Addition of a Variable -- 17.8. Parametric Programming -- 17.9. Parametric Changes in the Cost Vector -- 17.10. Parametric Changes in the Requirement Vector -- 17.11. Exercises -- Chapter 18. Bounded Variable Problems -- 18.2. Bounded from Below -- 18.3. Bounded from Above -- 18.4. The Optimality Criterion -- 18.5. Improving a Basic Feasible Solution -- 18.6. Example -- 18.7. Exercises -- Chapter 19. Transportation Problems -- 19.1. Introduction -- 19.2. The Mathematical Formulation -- 19.3. Fundamental Properties of Transportation Problems -- 19.4. Initial Basic Feasible Solution -- 19.5. Duality and Optimality Criterion -- 19.6. Improvement of a Basic Feasible Solution -- 19.7. The Transportation Algorithm -- 19.8. Degeneracy -- 19.9. Examples -- 19.10. Unbalanced Transportation Problem -- 19.11. The Transhipment Problem -- 19.12. Exercises -- Chapter 20. Assignment Problems -- 20.1. Introduction and Mathematical Formulation -- 20.2. The Hungarian Method -- 20.3. The Assignment Algorithm -- 20.4. Variations of the Assignment Model -- 20.5. Some Applications of the Assignment Model -- 20.6. Exercises -- Chapter 21. The Decomposition Principle for Linear Programs -- 21.1 Introduction -- 21.2. The Original Problem and its Equivalent -- 21.3. The Decomposition Algorithm.

21.4. Initial Basic Feasible Solution -- 21.5. The Case of Unbounded Sj -- 21.6. Remarks on Methods of Decomposition -- 21.7. Example -- 21.8. Exercises -- Chapter 22. Polynomial Time Algorithms for Linear Programming -- 22.1. Introduction -- 22.2. Computational Complexity of Linear Programs -- 22.3. Khachiyan's Ellipsoid Method -- 22.4. Solving Linear Programming Problems by the Ellipsoid Method -- 22.5. Karmarkar's Polynomial-Time Algorithm -- 22.6. Convergence and Complexity of Karmarkar's Algorithm -- 22.7. Conversion of a General Linear Program into Karmarkar's Form -- 22.8. Exercises -- PART 3: NONLINEAR AND DYNAMIC PROGRAMMING -- Chapter 23. Nonlinear Programming -- 23.1. Introduction -- 23.2. Unconstrained Optimization -- 23.3. Constrained Optimization -- 23.4. Kuhn-Tucker Optimality Conditions -- 23.5. Kuhn-Tucker Constraint Qualification -- 23.6. Other Constraint Qualifications -- 23.7. Lagrange Saddle Point Problem and Kuhn-Tucker Conditions -- 23.8. Exercises -- Chapter 24. Quadratic Programming -- 24.1 Introduction -- 24.2. Wolfe's Method -- 24.3. Dantzig's Method -- 24.4. Beale's Method -- 24.5. Lemke's complementary Pivoting Algorthm -- 24.6. Exercises -- Chapter 25. Methods of Nonlinear Programming -- 25.1. Separable Programming -- 25.2. Kelley's Cutting Plane Method -- 25.3. Zoutendijk's Method of Feasible Directions -- 25.4. Rosen's Gradient Projection Method -- 25.5. Wolfe's Reduced Gradient Method -- 25.6. Zangwill's Convex Simplex Method -- 25.7. Dantzig's Method for Convex Programs -- 25.8. Exercises -- Chapter 26. Duality in Nonlinear Programming -- 26.1. Introduction -- 26.2. Duality Theorems -- 26.3. Special Cases -- Chapter 27. Stochastic Programming -- 27.1. Introduction -- 27.2. General Stochastic Linear Program [422, 423] -- 27.3. The Sochastic Objective Function -- 27.4. The General Case -- 27.5. Exercises.

Chapter 28. Some Special Topics in Mathematical Programming -- 28.1. Goal Programming -- 28.2. Multiple Objective Linear Programming -- 28.3. Fractional Programming -- 28.4. Exercises -- Chapter 29. Dynamic Programming -- 29.1. Introduction -- 29.2. Basic Features of Dynamic Programming Problems and the Principle of Optimality -- 29.3. The Functional Equation -- 29.4. Cargo Loading Problem -- 29.5. Forward and Backward Computations, Sensitivity Analysis -- 29.6. Shortest Route Problem -- 29.7. Investment Planning -- 29.8. Inventory Problem -- 29.9. Reliability Problem -- 29.10. Cases where Decision Variables are Continuous -- 29.11. The Problem of Dimensionality -- 29.12. Reduction in Dimensionality -- 29.13. Stochastic Dynamic Programming -- 29.14. Infinite Stage Process -- 29.15. Exercises -- Bibliography -- Index.
Abstract:
Mathematical Programming, a branch of Operations Research, is perhaps the most efficient technique in making optimal decisions. It has a very wide application in the analysis of management problems, in business and industry, in economic studies, in military problems and in many other fields of our present day activities. In this keen competetive world, the problems are getting more and more complicated ahnd efforts are being made to deal with these challenging problems. This book presents from the origin to the recent developments in mathematical programming. The book has wide coverage and is self-contained. It is suitable both as a text and as a reference. * A wide ranging all encompasing overview of mathematical programming from its origins to recent developments * A result of over thirty years of teaching experience in this feild * A self-contained guide suitable both as a text and as a reference.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: