Cover image for Modern Size-Exclusion Liquid Chromatography : Practice of Gel Permeation and Gel Filtration Chromatography.
Modern Size-Exclusion Liquid Chromatography : Practice of Gel Permeation and Gel Filtration Chromatography.
Title:
Modern Size-Exclusion Liquid Chromatography : Practice of Gel Permeation and Gel Filtration Chromatography.
Author:
Striegel , Andre.
ISBN:
9780470442838
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (512 pages)
Contents:
MODERN SIZE-EXCLUSION LIQUID CHROMATOGRAPHY -- CONTENTS -- Foreword -- Preface -- 1 Background -- 1.1 Introduction -- 1.2 History -- 1.3 Utility of SEC -- 1.4 Molar Mass Averages and Molar Mass Distribution -- 1.5 Structure of The Book -- References -- 2 Retention -- 2.1 Introduction -- 2.2 Solute Retention in LC -- 2.3 Solute Retention in SEC -- 2.4 SEC Retention Mechanism -- 2.5 Theoretical Models of SEC Separation -- 2.5.1 Hard-Sphere Solute Model -- 2.5.2 Rigid Molecules of Other Shapes -- 2.5.3 Random-Coil Solute Model -- 2.6 Other Considerations -- 2.6.1 Factors Influencing SEC Retention -- 2.6.2 Failure to Define an Effective Polymer Radius -- 2.6.3 Hydrodynamic Chromatography Effects in SEC -- 2.6.4 Slalom Chromatography Effects in SEC -- References -- 3 Band Broadening -- 3.1 Introduction -- 3.1.1 Basic Column-Dispersion Processes -- 3.1.2 Peak Variance -- 3.2 LC Plate Theory -- 3.2.1 Basic Plate Theory -- 3.2.2 The van Deemter Equation -- 3.2.3 Flow-Diffusion Coupling -- 3.2.4 Reduced Plate Height -- 3.3 Mechanism of SEC Band Broadening -- 3.3.1 Experimental Verification -- 3.3.2 Rate Theory -- 3.3.3 Theoretical Inferences -- 3.4 Influencing Factors -- 3.4.1 Column Parameters -- 3.4.2 Kinetic Factors -- 3.4.3 Experimental Factors -- 3.5 Experimental Methods -- 3.5.1 Plate Number -- 3.5.2 Column-Dispersion Calibration -- References -- 4 Resolution -- 4.1 Introduction -- 4.1.1 Chromatographic Resolution -- 4.1.2 Peak-Capacity Concept -- 4.2 Resolution Concept in SEC of Polymers -- 4.3 Molar Mass Accuracy Criterion -- 4.4 Applications of Column Performance Criteria -- 4.5 Pore Geometry and Operational Effects -- 4.5.1 Connecting Columns -- 4.5.2 Separation Capacity of Single Pores -- 4.5.3 Effect of Packing Pore-Size Distribution -- 4.5.4 Effect of Operating Parameters -- References -- 5 Equipment -- 5.1 Introduction.

5.2 Extra-Column Effects: General -- 5.3 Mobile-Phase Reservoirs, Inlet Filters, and Degassers -- 5.4 Solvent-Metering Systems (Pumps) -- 5.4.1 General Pump Specifications -- 5.4.2 Reciprocating Pumps -- 5.5 Sample Injectors and Autosamplers -- 5.6 Miscellaneous Hardware -- 5.7 Laboratory Safety -- References -- 6 The Column -- 6.1 Introduction -- 6.2 Column Packings -- 6.2.1 Semirigid Organic Gels -- 6.2.2 Rigid Inorganic Packings -- 6.3 Column-Packing Methods -- 6.3.1 Particle Technology -- 6.3.2 Basis of Column-Packing Techniques -- 6.4 Column Performance -- References -- 7 Experimental Variables and Techniques -- 7.1 Introduction -- 7.2 Solvent Effects -- 7.2.1 Sample Solubility -- 7.2.2 Other Solvent Effects -- 7.2.3 Flow-Rate Effects -- 7.2.4 Temperature Effects -- 7.3 Substrate Effects -- 7.4 Sample Effects -- 7.4.1 Sample Volume -- 7.4.2 Sample Weight or Concentration -- 7.5 Laboratory Techniques -- 7.6 Solvent Selection and Preparation -- 7.6.1 Convenience -- 7.6.2 Sample Type -- 7.6.3 Effect on Column Packing -- 7.6.4 Operation -- 7.6.5 Safety -- 7.6.6 Solvent Purification and Modification -- 7.7 Selection and Use of Standard Reference Materials -- 7.8 Detector Selection -- 7.9 Column Selection and Handling -- 7.9.1 Optimum Single Pore-Size Separations -- 7.9.2 Bimodal Pore-Size Separations: Optimum Linearity and Range -- 7.9.3 Other Column Selection Guidelines -- 7.9.4 Column Handling -- 7.10 Chromatographic Design Considerations -- 7.11 Making the Separation -- 7.11.1 Dissolving the Sample and Standards -- 7.11.2 Sample Solution Filtration -- 7.11.3 Sample Injection -- 7.11.4 Baseline Stability -- 7.11.5 Obtaining and Using a Chromatogram Baseline -- 7.12 Troubleshooting -- 7.12.1 Excessively High Pressure -- 7.12.2 Column Plugging -- 7.12.3 Air Bubbles and Leaks -- 7.12.4 Poor Resolution -- 7.12.5 Low Solute Recovery.

7.12.6 Constancy of Separation -- 7.12.7 Peak Shape -- References -- 8 Calibration -- 8.1 Introduction -- 8.2 Calibration with Narrow-MMD Standards -- 8.2.1 Peak-Position (Calibrant-Relative) Calibration -- 8.2.2 Universal Calibration -- 8.2.3 Mark-Houwink Calibration -- 8.3 Calibration with Broad-MMD Standards -- 8.3.1 Integral-MMD Method -- 8.3.2 Linear Calibration Methods -- 8.4 Accuracy of Calibration Methods -- 8.5 Actual Molar Mass Across the SEC Elution Curve -- 8.6 Linear Calibration Ranges -- 8.7 Recent Developments and Recommendations on Band-Broadening Correction -- 8.7.1 Algorithm for BBC in Conventional SEC Analysis with Only a Concentration-Sensitive Detector -- 8.7.2 Algorithm for BBC in Dual-Detector SEC Using an Online Static Light-Scattering Detector -- 8.7.3 Algorithm for BBC in Universal Calibration Using an Online Viscosity Detector -- 8.7.4 Algorithm for BBC in Triple-Detector SEC Using Online Static Light Scattering, Viscosity, and Concentration Detectors -- References -- 9 Physical Detectors -- 9.1 Introduction -- 9.2 Concentration-Sensitive Detectors -- 9.2.1 Differential Refractometers -- 9.2.2 UV/Visible Detectors -- 9.2.3 Evaporative-Type Detectors -- 9.3 Static Light-Scattering Detection -- 9.3.1 Multiangle Light Scattering -- 9.3.2 Low-Angle Light Scattering -- 9.3.3 Off-Line, Batch-Mode MALS -- 9.3.4 Depolarized MALS -- 9.4 Quasielastic Light-Scattering Detection -- 9.4.1 QELS Instrumentation -- 9.5 Viscometric Detection -- 9.5.1 Single-Capillary Viscometers -- 9.5.2 Differential Viscometers -- 9.5.3 Intrinsic Viscosity and the Viscometric Radius -- 9.5.4 Viscometry Instrumentation -- 9.6 SEC(3) -- References -- 10 Chemical Detectors -- 10.1 Introduction -- 10.2 Mass Spectrometry -- 10.2.1 Electrospray Ionization Mass Spectrometry -- 10.2.2 Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry.

10.2.3 Inductively Coupled Plasma Mass Spectrometry -- 10.3 Fourier Transform Infrared Spectroscopy -- 10.3.1 FTIR as a Pseudophysical Detector: Short-Chain Branching Distribution of Polyolefins -- 10.3.2 FTIR as a Chemical Detector -- 10.3.3 Comparison of Online and Continuous Off-Line SEC/FTIR -- 10.4 Nuclear Magnetic Resonance Spectroscopy -- 10.5 Other Chemical Detectors -- 10.5.1 Ultraviolet Detection -- 10.5.2 Fluorescence -- 10.5.3 Conductivity -- 10.5.4 Dynamic Surface Tension Detection -- 10.5.5 Microscale Molecular Mass Sensor -- 10.6 Coupling of Chemical Detectors -- References -- 11 Polymer Architecture and Dilute Solution Thermodynamics -- 11.1 Introduction -- 11.2 Long-Chain Branching -- 11.2.1 Quantitating the Long-Chain Branching Distribution by SEC/MALS -- 11.2.2 Qualitative and Semiquantitative Descriptions of the Long-Chain Branching Distribution by SEC/VISC -- 11.2.3 Average Molar Mass Between Long-Chain Branches -- 11.3 Determining the Short-Chain Branching Distribution -- 11.4 Polymer Architecture: Conformation and Topology -- 11.4.1 Determining the Fractal Dimension -- 11.4.2 Dimensionless Radii Ratios -- 11.4.3 Dimensionless Functions -- 11.4.4 Caveats Regarding Dimensionless Parameters -- 11.5 Star Polymers -- 11.6 Determining the Persistence Length -- 11.7 Determining the Characteristic Ratio -- 11.8 Local Polydispersity -- References -- 12 Aqueous SEC -- 12.1 Introduction -- 12.2 Aqueous SEC Columns -- 12.3 Non-Size-Exclusion Effects and Mobile-Phase Additives -- 12.4 Select Applications of Aqueous SEC -- 12.4.1 Polysaccharides -- 12.4.2 Proteins and Peptides -- 12.4.3 Synthetic Polymers -- 12.4.4 Polyelectrolytes -- 12.4.5 Inorganic Compounds -- References -- 13 Oligomeric SEC -- 13.1 Introduction -- 13.2 What is an Oligomer? -- 13.3 Preliminary Considerations -- 13.3.1 Advantages over Polymeric SEC.

13.3.2 Difficulties as Compared to Polymeric SEC -- 13.4 Oligomeric SEC Columns -- 13.5 Select Applications of Oligomeric SEC -- 13.5.1 Characterization of Tackifiers, Resins, and Resin Prepolymers -- 13.5.2 Characterization of Antioxidant Lubricant Additives -- 13.5.3 Characterization and Quantitation of Plasticizers -- 13.5.4 Polymer Exemption Data -- 13.5.5 SEC of Oligosaccharides -- 13.5.6 Determining the Solution Conformational Entropy of Oligomers -- 13.5.7 Determining Molar Masses of Oligomers by SEC/MALS -- 13.6 Optimizing Resolution in Oligomeric SEC -- References -- 14 SEC in 2D-LC Separations -- 14.1 Introduction -- 14.2 Principles of 2D Polymer Separations -- 14.2.1 Separation Angle and Percent Synentropy -- 14.3 Designing an Experimental 2D-LC Protocol -- 14.4 Eluent Transfer in 2D-LC -- 14.5 Stop-Flow SEC × LC -- 14.6 Select Applications of 2D-LC -- 14.6.1 HPLC -- 14.6.2 Liquid Chromatography at the Critical Condition -- 14.6.3 Other Methods -- 14.7 SEC in 3D Separations -- References -- 15 Special Techniques -- 15.1 Introduction -- 15.2 Preparative SEC -- 15.2.1 Experimentation -- 15.2.2 Applications -- 15.3 Recycle SEC -- 15.3.1 Theory -- 15.3.2 Equipment -- 15.3.3 Uses of the Recycle Method -- 15.4 High-Speed SEC -- 15.5 Inverse SEC -- 15.6 Vacancy and Differential SEC -- 15.7 Size-Exclusion Electrochromatography -- References -- 16 High-Temperature SEC and Rheological Connections -- 16.1 Introduction -- 16.2 High-Temperature SEC -- 16.2.1 HT-SEC Instrumentation -- 16.3 Complementarity of SEC and Rheology -- 16.3.1 Obtaining the MMD from Rheological Measurements -- 16.3.2 Obtaining Rheological Properties from SEC Measurements -- 16.3.3 Behavior of Dilute Oligomer Solutions -- References -- Symbols -- Abbreviations -- Index.
Abstract:
André M. Striegel, PhD, is Assistant Professor in the Department of Chemistry & Biochemistry at the Florida State University, with previous industrial R&D experience at Solutia. He has published and lectured extensively in the area of polymer chromatography and is the recipient of several national awards in analytical chemistry. WALLACE W. YAU, PhD, received his doctorate in physical chemistry from University of Massachusetts and is currently a scientist specialist at Dow Chemical Co., with past industrial experience at DuPont and Chevron. He has been in GPC research and polymer characterization for the past four decades. JOSEPH J. KIRKLAND, PhD, is author or coauthor of eight widely read books on liquid chromatography, more than 150 peer-reviewed papers, and thirty patents. With over fifty years of industrial experience, he has been the recipient of many major national and international awards in analytical chemistry. DONALD D. BLY, PhD, retired as manager of analytical science, central research, DuPont. He has remained working as a consultant to analytical and analytical-polymer science businesses and has remained active in the American Chemical Society and ASTM.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: