Cover image for Advances In Engineering Mechanics--reflections And Outlooks : In Honor Of Theodore Y-t Wu.
Advances In Engineering Mechanics--reflections And Outlooks : In Honor Of Theodore Y-t Wu.
Title:
Advances In Engineering Mechanics--reflections And Outlooks : In Honor Of Theodore Y-t Wu.
Author:
Chwang, Allen T.
ISBN:
9789812702128
Personal Author:
Physical Description:
1 online resource (747 pages)
Contents:
TABLE OF CONTENTS -- Acknowledgments -- Preface -- Prologue: Cavitation -- On the theory and modeling of real cavity flows Marshall Tulin -- 1. Introduction -- 2. FLOW FIELDS -- 3. VORTICITY -- 4. CAVITY CONFIGURATIONS AS CONSTRAINED BY VORTICITY -- 5. VISCOUS SEPARATION VS. CAVITATION -- 6. THE SUBCRITICAL REGIME -- 7. THE SUPERCRITICAL REGIME -- References -- Chapter 1 : Nonlinear Waves: Theoretical Considerations -- Localization of dispersive waves in weakly random media C. C. Mei, Jorgen H. Pihl, Mathew Hancock & Yile Li -- 1. Introduction -- 2. Nearly sinusoidal waves -- 2.1. The envelope equation -- 2.2. Narrow-banded water waves over intermediate depth -- 2.2.1. Localization of steady Stokes waves -- 2.2.2. Nonlinear instability of side-band disturbances -- 3. Transient long waves in a shallow sea -- 3.1. The Kd V- Burgers integvo-differential equation -- 3.1.1. The evolution equation -- 3.1.2. Sample numerical results -- 4. Concluding remarks -- Acknowledgements -- References -- Water wave equations Jin E. Zhang -- 1. Introduction -- 2. Wu's Unified Theory for Modeling Water Waves -- 3. Boussinesq Models -- 4. Integrable Water Wave Equations -- 4.1. The KdV equation -- 4.2. The Boussinesq single-equation -- 4.3. The classical Boussinesq equation -- 4.4. The Camassa-Holm equation -- 5. Two Problems -- References -- Wu's mass postulate and approximate solutions of the fKdV equation S. S. P. Shen, Q. Zheng, S. Gao, Z. Xu & C. T. Ong -- 1. Introduction -- 2. Amplitude of the upstream solitons -- 3. Mass postulate and the depth of the downstream depression -- 4. Geometry of the waves on the x-t plane -- 5. Solitons in the atmosphere over the Hainan island -- Acknowledgments -- References -- Explicit analytic solutions of KdV equation given by the homotopy analysis method Chen Chen, Chun Wang & Shijun Liao -- 1. Introduction.

2. Solution of periodic wave -- 3. Solution of solitary wave -- 4. Validation of the solutions -- 4.1. Cnoidal waves -- 4.2. Solitary waves -- 5. Conclusions -- References -- Rigorous computation of Nekrasov's integral equation for water waves Sunao Murashige & Shin 'ichi Oishi -- 1. Introduction -- 2. The singular integral of trigonometric polynomials -- 3. The method of verification -- 3.1. The truncated pard of (20) -- 3.2. The finite dimensional part of (20) -- 4. Results -- 5. Conclusions -- Acknowledgments -- References -- Numerical modeling of nonlinear surface waves and its validation W. Choi, C. P. Kent & C. J. Schillinger -- 1. Introduction -- 2. Mathematical Formulation -- 2.1. Asymptotic expansion -- 2.2. Nonlinear evolution equations -- 2.3. Pseudo-spectral method -- 3. Validation of Models for One-dimensional Waves -- 3.1. Exact evolution equations -- 3.2. Numerical method for exact evolution equations -- 3.3. Progressive waves -- 3.4. Benjamin- Feir instability -- 4. Numerical Solutions for Two-dimensional Waves -- 4.1. Nonlinear resonant wave-wave interactions -- 4.2. Nonlinear evolution of random wave fields -- 5. Discussion -- References -- Three dimensional wave for water waves on finite depth: The Davey-Stewartson system K. W. Chow, D. H. Zhang & C. K. Poon -- 1. Introduction -- 2. Formulation -- Appendix -- Acknowledgement -- References -- Rip currents due to wave-current interaction Jie Yu & A. Brad Murray -- 1. Introduction -- 2. Formulation -- 3. Basic state: the 0th order solutions -- 4. Linear instability: the 1st order solution -- 4.1. Solution procedure -- 5. Results and discussion -- 5.1. Eflects of incident wave height -- 5.2. Effects of bottom friction -- 6. Concluding remarks -- Acknowledgments -- References -- Higher order Boussinesq equations for water waves on uneven bottom Hua Liu & Benlong Wang -- 1. Introduction.

2. Mathematical Formulation -- 3. Numerical Method -- 4. Numerical Results -- 5. Concluding Remarks -- Acknowledgments -- References -- Waves on a liquid sheet S. P. Lin -- 1. Governing Equations -- 2. Sheet Waves -- 2.1. Linear Sheet Waves -- 2.2. Sinuous mode -- 2.3. Varicose mode -- 2.4. Nonlinear Sheet Waves -- 3. Discussion -- References -- A different view on data from a nonlinear and nonstationary world Norden E. Huang -- 1. Introduction -- 2. The Hilbert-Huang Transform -- 2.1. The Empirical Mode Decomposition Method: The Sifring Process -- 2.2. The Hilbert Spectral Analysis -- 3. Mathematical Problems related to HHT -- 3.1. Adaptive data analysis methodology -- 3.2. Nonlinear system identification -- 3.3. Prediction problem for nonstationary processes, the end effects of EMD -- 3.4. The Spline problem (best spline implement of HHT, convergence and 2-D) -- 3.5. The Optimization Problem (the best IMF selection and uniqueness Mode mixing) -- 3.6. Approximation problem (Hilbert transform and quadrature) -- 3.7. Miscellaneous statistical questions concerning HHT -- 4. Conclusion -- Acknowledgements -- References -- Chapter 2: Nonlinear Waves: Experiments and Computations -- Solitary-wave collisions Joseph Hammack, Diane Henderson, Philippe Guyenne & Ming Yi -- 1. Introduction -- 2. Experimental Program -- 2.1 Wave Channel -- 2.2 Wave-maker -- 2.3 Wave & Depth Measurements -- 2.4 Data Acquisition & Control -- 2.5 Procedures -- 2.6 Wave Generation -- 2.7 Discussion -- 3. Mathematical Models -- 3.1 Euler Model -- 3.2. Kd V Models -- 4. Head-on (counter-propagating) collision -- 5. Following (co-propagating) collision -- 6. Summary -- References -- Computer simulations of overtaking internal solitary waves Brian C. Barr & Daniel T. Valentine -- 1. Introduction -- 2. Computational analysis methodology -- 2.1. Flow-field geometry and initial condition.

2.2. Equations of motion -- 2.3. Computational-solution methods -- 3. Wave Theory -- 3.1. Weakly nonlinear model -- 3.2. Fully nonlinear model -- 4. Results and discussion -- 4.1. Internal solitary waves -- 4.2. Overtaking solitary waves -- 5. Conclusions -- References -- Theoretical and experimental investigation of waves due to a moving dipole in a stratified fluid Shiqiang Dai, Gang Wei, Dong-Qiang Lu & Xiao-Sing Su -- 1. Introduction -- 2. Theoretical Approach -- 2.1. Formulation of Problem -- 2.2. Method of Green's Function -- 2.3. Divergence field on the free surface -- 2.4. Wave elevation at the interface -- 3. Comparison with experimental results -- 4. Conclusions -- 5. Acknowledgment -- 6. References -- Thin film dynamics in a liquid lined circular pipe Roberto Camassa & Long Lee -- 1. Problem formulation and Poiseuille solutions -- 1.1. Comparison with experimental data -- 1.2. Eflective viscosity -- 2. A two-phase gas-liquid model -- 2.1. The evolution equation for a bounded film -- 2.2. Numerical solutions and comparison -- 2.3. Modified effective viscosity -- 2.4. Surface tension parameter -- 3. Discussion and conclusion -- References -- Transverse waves in a channel with rectangular cross section L. M Deng & A. T. Chwang -- 1. Introduction -- 2. Experimental Configuration -- 3. Experimental Results -- 4. Discussion and Conclusions -- Acknowledgments -- References -- Long time evolution of nonlinear wave trains in deep water Hwung-Hweng Hwung & Wen-Son Chiang -- 1. Introduction -- 2. Experiments -- 3. Evolution of non-breaking type -- 4. Evolution of breaking type -- 5. Conclusions -- Acknowledgments -- References -- On the Zhang-Wu run-up model Hongqiang Zhou, Michelle H. Teng & Kelie Feng -- 1. Introduction -- 2. The Zhang-Wu Run-Up Model -- 3. Numerical and Experimental Results -- 4. Discussions and Conclusions -- 5. Acknowledgement.

References -- A numerical study of bore runup a slope Qinghai Zhang & Philip L.-F. Liu -- 1. Introduction -- 2. Governing Equations and Boundary Conditions -- 3. Numerical Setup -- 4. Numerical Results -- 4.1. Bore Collapse -- 4.2. Runup -- 4.3. Rundown -- 4.4. Turbulent Kinetic Energy Evolution during Runup -- 5. Conclusions -- Acknowledgment -- References -- Studies of intense internal gravity waves: Field measurements and numerical modeling Hsien P. Pao & Andrey N. Serebryany -- 1. Introduction -- 2. Study 1: Intense Internal Waves on Shelf -- 2.1. Numerical Modeling -- 3. Study 2: Generation of Intense Internal Waves by Surface Intrusions on a Shelf -- 3.1. Numerical Modeling -- 3.2. Numerical Results -- References -- Nonlinear internal waves in the South China Sea Antony Liu, Yunhe Zhao & Ming-Kuang Hsu -- 1. Introduction -- 2. Recent SAR observations -- 3. Internal Wave Data Analysis -- 4. Nonlinear Internal Wave Evolution on a Shelf -- 5. Numerical Simulation and Comparison -- 6. Summary and Discussion -- Acknowledgement -- References -- A numerical predictive model of tides around Taiwan Hsien- Wen Li & Yung-Ching Wu -- 1. Introduction -- 2. Governing Equations -- 3. Results -- 4. Discussion and Conclusion -- Acknowledgements -- References -- New concepts in image analysis applied to the study of nonlinear wave interactions Steven R. Long -- 1. Introduction -- 2. General Concepts of Image Processing -- 3. New Concepts in Image Analysis -- 3.1. The Laboratory That Produced the Nonlinear Waves -- 3.2. The Digital Camera and Setup -- 3.3. Experimental Images of Nonlinear Waves -- 3.4. EMD/HHT Analysis on Images of Nonlinear Waves -- 3.4.1. Components, Contour and Surface Visualization -- 3.4.2. Volume Computations and Isosurface Visualization -- 3.4.3. Use of EML/HHT in Image Decomposition -- 4. Summary -- Acknowledgements -- References.

Chapter 3: Wave Structure Interaction.
Abstract:
This volume presents more than 40 original papers on recent advances in several topics in engineering mechanics presented at The Theodore Y-T Wu Symposium on Engineering Mechanics: A celebration of Professor Wu’s scientific contributions for his 80th birthday. The distinguished contributors include several members of the National Academy of Engineers and the topics cover nonlinear water waves, swimming and flying in nature, biomechanics, data analysis methodology, and propulsion hydrodynamics. The papers honor the significant accomplishments of Professor Wu in Engineering Science at Caltech, particularly in the areas of nonlinear waves, hydrodynamics, biomechanics and wave-structure interaction. They review the present state of the art of engineering mechanics, and chart the future of the field from the viewpoint of civil engineering, biomechanics, geophysics, mechanical engineering, naval architecture, ocean, and offshore engineering. The primary purpose of this book is to provide guidance and inspiration for those interested in continuing to advance engineering mechanics into the 21st century. To quote Professor Wu: â€The value of a book publication lies in disseminating new knowledge attained with effort and dedication from all those who participate, and in having the useful results within ready reach of students and researchers actively working in the field.”.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: