Cover image for Polymer Composites, Biocomposites.
Polymer Composites, Biocomposites.
Title:
Polymer Composites, Biocomposites.
Author:
Thomas, Sabu.
ISBN:
9783527674251
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (610 pages)
Contents:
Polymer Composites -- Title Page -- Copyright -- Contents -- The Editors -- List of Contributors -- Chapter 1 Advances in Polymer Composites: Biocomposites- State of the Art, New Challenges, and Opportunities -- 1.1 Introduction -- 1.2 Development of Biocomposite Engineering -- 1.3 Classification of Biocomposites -- References -- Chapter 2 Synthesis, Structure, and Properties of Biopolymers (Natural and Synthetic) -- 2.1 Introduction -- 2.2 Classification -- 2.3 Natural Biopolymers -- 2.3.1 Proteins -- 2.3.1.1 Collagen -- 2.3.1.2 Elastin -- 2.3.1.3 Albumin -- 2.3.1.4 Fibrin -- 2.3.1.5 Fibronectin -- 2.3.1.6 Zein -- 2.3.1.7 Gluten -- 2.3.1.8 Gelatin -- 2.3.1.9 Soy Protein -- 2.3.1.10 Whey Protein -- 2.3.1.11 Casein -- 2.3.2 Polysaccharides -- 2.3.2.1 Cellulose -- 2.3.2.2 Starch -- 2.3.2.3 Chitosan -- 2.3.2.4 Chitin -- 2.3.2.5 Hyaluronic Acid (HA) -- 2.3.2.6 Alginic Acid -- 2.3.2.7 Pectin -- 2.3.3 Polysaccharides from Marine Sources -- 2.3.3.1 Agar -- 2.3.3.2 Agarose -- 2.3.3.3 Alginic Acid/Alginate -- 2.3.3.4 Carrageenan -- 2.3.3.5 Cutan -- 2.3.3.6 Cutin -- 2.3.4 Low Molecular Weight Biopolymers -- 2.3.4.1 Guar Gum -- 2.3.4.2 Rosin -- 2.3.4.3 Chondroitin Sulfate -- 2.3.4.4 Gum Copal -- 2.3.4.5 Gum Damar -- 2.3.5 Microbial Synthesized Biopolymers -- 2.3.5.1 Pullulan -- 2.3.5.2 Dextran -- 2.3.5.3 Curdlan -- 2.3.5.4 Xanthan -- 2.3.5.5 Bacterial Cellulose -- 2.3.6 Natural Poly(Amino Acids) -- 2.3.6.1 Jute -- 2.3.6.2 Coir -- 2.3.6.3 Yarn -- 2.3.6.4 Silk -- 2.3.7 Nucleic Acids -- 2.3.7.1 Natural Nucleic Acids -- 2.3.7.2 Synthetic Nucleic Acids (SNA) -- 2.4 Synthetic Biopolymers -- 2.4.1 Poly(Glycolide) PGA or Poly(Glycolic Acid) -- 2.4.2 Poly(Lactic Acid) (PLA) -- 2.4.3 Poly(Lactide-co-Glycolide) -- 2.4.4 Polycaprolactone (PCL) -- 2.4.5 Poly(p-Dioxanone) (PDO) -- 2.4.6 Poly(Trimethylene Carbonate) (PTMC).

2.4.7 Poly-β-Hydroxybutyrate (PHB) -- 2.4.8 Poly(Glycerol Sebacic Acid) (PGS) -- 2.4.9 Poly(Propylene Fumarate) (PPF) -- 2.4.10 Poly(Anhydrides) (PAs) -- 2.4.11 Poly(Orthoesters) (POEs) -- 2.4.12 Poly(Phosphazene) -- 2.4.13 Poly(Vinyl Alcohol) (PVA) -- 2.4.14 Poly(Hydroxyalkanoates) (PHAs) -- 2.4.15 Poly(Ester Amides) (PEAs) -- 2.5 Need for Biopolymers -- 2.6 Exceptional Properties of Biopolymers -- 2.7 Biomedical Polymers -- 2.7.1 Chitosan -- 2.7.2 Poly(Lactic Acid) (PLA) -- 2.7.3 Collagen -- 2.7.4 Polycaprolactone (PCL) -- 2.7.5 Poly(2-Hydroxyethyl Methacrylate) (PHEMA) -- 2.7.6 Carbohydrate-Based Vaccines -- 2.7.7 Chitin -- 2.7.8 Albumin -- 2.7.9 Fibrin -- 2.7.10 Hyaluronic Acid (HA) -- 2.7.11 Chondroitin Sulfate (CS) -- 2.7.12 Alginic Acid -- 2.7.13 Poly(Anhydrides) -- 2.8 Composite Material -- 2.9 Blends -- 2.10 Applications of Biopolymers -- 2.10.1 Medical Applications -- 2.10.1.1 Surgical Sutures -- 2.10.1.2 Bone Fixation Devices -- 2.10.1.3 Vascular Grafts -- 2.10.1.4 Adhesion Prevention -- 2.10.1.5 Artificial Skin -- 2.10.1.6 Drug Delivery Systems -- 2.10.1.7 Artificial Corneas -- 2.10.1.8 Artificial Blood Vessels -- 2.10.2 Agricultural Applications -- 2.10.2.1 Agricultural Mulches -- 2.10.2.2 Controlled Release of Agricultural Chemicals -- 2.10.2.3 Agricultural Planting Containers -- 2.10.3 Packaging -- 2.10.3.1 Starch-Based Packaging Materials -- 2.10.3.2 PLA-Based Packaging Materials -- 2.10.3.3 Cellulose-Based Packaging Materials -- 2.10.3.4 Pullulan-Based Packaging Materials -- 2.10.3.5 Other Biopackaging Solution -- 2.11 Partially Biodegradable Packaging Materials -- 2.12 Nonbiodegradable Biopolymers -- 2.12.1 Poly(Thioesters) -- 2.12.1.1 Poly(3-Mercaptopropionate) (Poly(3MP)) -- 2.13 Conversion of Nonbiodegradable to Biodegradable Polymers.

2.14 Current Research Areas in Biopolymers and Bioplastics -- 2.15 General Findings and Future Prospects -- Acknowledgments -- Abbreviations -- References -- Chapter 3 Preparation, Microstructure, and Properties of Biofibers -- 3.1 Introduction -- 3.2 Structure of Natural Plant Fibers -- 3.2.1 Microstructure -- 3.2.2 Crystal Structure -- 3.3 Ultimate Properties of Natural Fibers -- 3.3.1 Elastic Modulus -- 3.3.2 Tensile Strength -- 3.4 Mechanical and Thermal Properties of Cellulose Microfibrils and Macrofibrils -- 3.5 All-Cellulose Composites and Nanocomposites -- 3.6 Conclusions -- References -- Chapter 4 Surface Treatment and Characterization of Natural Fibers: Effects on the Properties of Biocomposites -- 4.1 Introduction -- 4.2 Why Is Surface Treatment of Natural Fibers Important in Biocomposites? -- 4.3 What Are the Surface Treatment Methods of Natural Fibers? -- 4.3.1 Chemical Treatment Methods -- 4.3.1.1 Alkali Treatment -- 4.3.1.2 Silane Treatment -- 4.3.1.3 Acetylation Treatment -- 4.3.1.4 Benzoylation and Benzylation Treatments -- 4.3.1.5 MAPP Treatment -- 4.3.1.6 Peroxide Treatment -- 4.3.2 Physical Treatment Methods -- 4.3.2.1 Plasma Treatment -- 4.3.2.2 Corona Treatment -- 4.3.2.3 Electron Beam Treatment -- 4.3.2.4 Ultraviolet Treatment -- 4.3.2.5 Ultrasonic Treatment -- 4.4 How Does the Surface Treatment Influence the Properties of Biocomposites? -- 4.4.1 Chemical Changes of Natural Fibers -- 4.4.2 Morphological and Structural Changes of Natural Fibers -- 4.4.3 Mechanical Changes of Natural Fibers -- 4.4.4 Interfacial Properties of Biocomposites -- 4.4.5 Mechanical Properties of Biocomposites -- 4.4.6 Impact Properties of Biocomposites -- 4.4.7 Dynamic Mechanical Properties of Biocomposites -- 4.4.8 Thermal Properties of Biocomposites.

4.4.9 Water Absorption Behavior of Biocomposites -- 4.5 Concluding Remarks -- References -- Chapter 5 Manufacturing and Processing Methods of Biocomposites -- 5.1 Processing Technology of Natural Fiber-Reinforced Thermoplastic Composite -- 5.1.1 Background -- 5.1.2 NF- Reinforced PLA Resin Composite Material -- 5.1.3 Pellet Production Technology of Continuation Fiber-Reinforced Thermoplastic Resin Composite Material -- 5.1.4 Pellet Manufacturing Technology of the Continuous Natural Fiber- Reinforced Thermoplastic Resin Composite Material -- 5.1.4.1 Process Outline -- 5.1.4.2 Review of Mechanical Apparatus -- 5.1.4.3 Main Equipment -- 5.1.4.4 Process Features -- 5.1.4.5 Mechanical Properties of NF-LFP -- 5.1.5 Pellet Manufacturing Technology of the Distributed Type Natural Fiber- Reinforced Thermoplastic Resin Composites -- 5.1.5.1 Process Development -- 5.1.5.2 Automatic Material-Supplying System -- 5.1.5.3 Optimal Screw Configuration and Influence of BF Fiber Diameter -- 5.1.5.4 Influence of BF Content -- 5.1.6 Future Outlook -- 5.2 Processing Technology of Wood Plastic Composite (WPC) -- 5.2.1 Raw Materials -- 5.2.1.1 Manufacture of Woody Materials -- 5.2.1.2 Plastic -- 5.2.1.3 Compatibilizer -- 5.2.2 Compounding Process -- 5.2.2.1 Compounding Using an Extrusion Machine -- 5.2.2.2 Compounding Using a Henschel Type Mixer -- 5.2.2.3 Evaluation of Compounds -- 5.2.3 Molding Process -- 5.2.3.1 Extrusion Molding -- 5.2.3.2 Injection Molding -- 5.2.4 The Future Outlook for WPC in Industry -- References -- Chapter 6 Biofiber-Reinforced Thermoset Composites -- 6.1 Introduction -- 6.2 Materials and Fabrication Techniques -- 6.2.1 Thermosetting Resins -- 6.2.1.1 Synthetic Thermosets -- 6.2.1.2 Biosynthetic Thermosets -- 6.2.2 Natural Fibers -- 6.2.3 Fabrication Techniques -- 6.2.3.1 Hand Layup -- 6.2.3.2 Compression Molding.

6.2.3.3 Filament Winding -- 6.2.3.4 Pultrusion -- 6.2.3.5 Resin Transfer Molding -- 6.3 Biofiber-Reinforced Synthetic Thermoset Composites -- 6.3.1 Polyester-Based Composites -- 6.3.2 Epoxy-Based Composites -- 6.3.3 Vinyl Ester-Based Composites -- 6.3.4 Phenolic Resin-Based Composites -- 6.3.5 Other Thermoset-Based Composites -- 6.4 Biofiber-Reinforced Biosynthetic Thermoset Composites -- 6.4.1 Lignin-Based Composites -- 6.4.2 Protein-Based Composites -- 6.4.3 Tannin-Based Composites -- 6.4.4 Triglyceride-Based Composites -- 6.4.5 Other Thermoset-Based Composites -- 6.5 End-of-Life Treatment of NFR Thermoset Composites -- 6.5.1 Recycling as Composite Fillers -- 6.5.2 Pyrolysis -- 6.5.3 Chemical Recycling -- 6.5.4 Energy Recovery -- 6.6 Conclusions -- References -- Chapter 7 Biofiber-Reinforced Thermoplastic Composites -- 7.1 Introduction -- 7.2 Source of Biofibers -- 7.3 Types of Biofibers -- 7.3.1 Annual Biofibers -- 7.3.1.1 Straw -- 7.3.1.2 Bast Fiber -- 7.3.1.3 Grasses -- 7.3.1.4 Residues -- 7.3.2 Perennial Biofibers (Wood Fibers) -- 7.3.2.1 Tree Plantation Products -- 7.3.2.2 Forest Plant Products -- 7.3.2.3 Agro-Forestry Products -- 7.4 Advantages of Biofibers -- 7.5 Disadvantages of Biofibers -- 7.6 Graft Copolymerization of Biofibers -- 7.7 Surface Modifications of Biofibers Using Bacterial Cellulose -- 7.8 Applications of Biofibers as Reinforcement -- 7.8.1 Composite Boards -- 7.8.1.1 Particleboards -- 7.8.1.2 Fiberboards -- 7.8.2 Biofiber-Reinforced Thermoplastic Composites -- 7.8.2.1 Bamboo Fiber-Reinforced Thermoplastics -- 7.8.2.2 Ramie Fiber-Reinforced Thermoplastics -- 7.8.2.3 Flax Fiber-Reinforced Thermoplastics -- 7.8.2.4 Sisal Fiber-Reinforced Thermoplastics -- 7.8.2.5 Jute Fiber Reinforced-Thermoplastics -- 7.8.2.6 Hemp Fiber-Reinforced Thermoplastics.

7.9 Biofiber Graft Copolymers Reinforced Thermoplastic Composites.
Abstract:
Polymer composites are materials in which the matrix polymer is reinforced with organic/inorganic fillers of a definite size and shape, leading to enhanced performance of the resultant composite. These materials find a wide number of applications in such diverse fields as geotextiles, building, electronics, medical, packaging, and automobiles. This first systematic reference on the topic emphasizes the characteristics and dimension of this reinforcement. The authors are leading researchers in the field from academia, government, industry, as well as private research institutions across the globe, and adopt a practical approach here, covering such aspects as the preparation, characterization, properties and theory of polymer composites. The book begins by discussing the state of the art, new challenges, and opportunities of various polymer composite systems. Interfacial characterization of the composites is discussed in detail, as is the macro- and micromechanics of the composites. Structure-property relationships in various composite systems are explained with the help of theoretical models, while processing techniques for various macro- to nanocomposite systems and the influence of processing parameters on the properties of the composite are reviewed in detail. The characterization of microstructure, elastic, viscoelastic, static and dynamic mechanical, thermal, tribological, rheological, optical, electrical and barrier properties are highlighted, as well as their myriad applications. Divided into three volumes: Vol. 1. Macro- and Microcomposites; Vol. 2. Nanocomposites; and Vol. 3. Biocomposites.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: