Cover image for Biosensors Nanotechnology.
Biosensors Nanotechnology.
Title:
Biosensors Nanotechnology.
Author:
Tiwari, Ashutosh.
ISBN:
9781118773932
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (552 pages)
Series:
Advanced Material Series
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: New Materials and Methods -- 1 ZnO and Graphene Microelectrode Applications in Biosensing -- 1.1 Biosensors Based on Nanostructured Materials -- 1.2 Graphene Nanomaterials Used in Electrochemical Biosensor Fabrication -- 1.3 ZnO Nanostructures Used in the Fabrication of Electrochemical Biosensors -- 1.4 Miniaturized Graphene and ZnO Nanostructured Electrochemical Biosensors for Food and Clinical Applications -- 1.4.1 Amperometric Biosensors -- 1.4.2 Potentiometric Sensors -- 1.5 Conclusions and Future Prospects -- Acknowledgements -- References -- 2 Assembly of Polymers/Metal Nanoparticles and Their Applications as Medical Devices -- 2.1 Introduction -- 2.2 Platinum Nanoparticles -- 2.3 Gold Nanoparticles -- 2.4 Silver Nanoparticles -- 2.5 Assembly of Polymers/Silver Nanoparticles -- 2.6 Conclusion -- Acknowledgements -- References -- 3 Gold Nanoparticle-Based Electrochemical Biosensors for Medical Applications -- 3.1 Introduction -- 3.1.1 Electrochemical Biosensors -- 3.2 Gold Nanoparticles -- 3.2.1 Preparation of AuNPs -- 3.2.2 AuNP Modified Electrodes -- 3.2.3 AuNP-Based Electrochemical Biosensors for Medical Applications -- 3.3 Conclusion -- References -- 4 Impedimetric DNA Biosensors Based on Nanomaterials -- 4.1 Introduction -- 4.1.1 DNA Biosensors (Genosensors) -- 4.1.2 Electrochemical DNA Biosensors -- 4.2 Electrochemical Impedance Spectroscopy for Genosensing -- 4.2.1 Theoretical Background -- 4.2.2 Impedimetric DNA Biosensors -- 4.3 Nanostructured Carbon Used in Impedimetric Genosensors -- 4.3.1 Carbon Nanotubes and Nanostructured Diamond -- 4.3.2 Graphene-Based Platforms -- 4.4 Nanostructured Gold Used in Impedimetric Genosensors -- 4.4.1 Gold Nanoelectrodes -- 4.4.2 Gold Nanoparticles Used as Labels -- 4.5 Quantum Dots for Impedimetric Genosensing.

4.6 Impedimetric Genosensors for Point-of-Care Diagnosis -- 4.7 Conclusions (Past, Present and Future Perspectives) -- Acknowledgements -- References -- 5 Graphene: Insights of its Application in Electrochemical Biosensors for Environmental Monitoring -- 5.1 Introduction -- 5.1.1 Graphene (GR) -- 5.1.2 Electrochemical Sensors -- 5.1.3 Graphene-based (bio)sensors: Generalities -- 5.2 Environmental Applications of Graphene-based Biosensors -- 5.2.1 Heavy Metals -- 5.2.2 Phenols -- 5.2.3 Pesticides -- 5.2.4 Other Pollutants -- 5.2.4.1 Hydrogen Peroxide -- 5.2.4.2 Microorganisms -- 5.3 Conclusions and Perspectives -- References -- 6 Functional Nanomaterials for Multifarious Nanomedicine -- 6.1 Introduction -- 6.2 Nanoparticle Coatings -- 6.3 Cyclic Peptides -- 6.4 Dendrimers -- 6.5 Fullerenes/Carbon Nanotubes/Graphene -- 6.6 Functional Drug Carriers -- 6.7 MRI Scanning Nanoparticles -- 6.8 Nanoemulsions -- 6.9 Nanofibers -- 6.10 Nanoshells -- 6.11 Quantum Dots -- 6.12 Nanoimaging -- 6.13 Inorganic Nanoparticles -- 6.14 Conclusions -- Acknowledgement -- References -- Part 2: Principals and Prospective -- 7 Computational Nanochemistry Study of the Molecular Structure, Spectra and Chemical Reactivity Properties of the BFPF Green Fluorescent Protein Chromophore -- 7.1 Introduction -- 7.2 Theory and Computational Details -- 7.3 Results and Discussion -- 7.3.1 Molecular Structures -- 7.3.2 IR and UV-Vis Spectra -- 7.3.3 ECD Spectra -- 7.3.4 Dipole Moments and Polarizabilities -- 7.3.5 HOMO and LUMO Orbitals -- 7.3.6 Chemical Reactivity -- 7.4 Conclusions -- Acknowledgements -- References -- 8 Biosynthesis of Metal Nanoparticles and Their Applications -- 8.1 Introduction -- 8.2 Synthesis of Metal Nanoparticles -- 8.2.1 Biosynthesis of Metal Nanoparticles by Microbes -- 8.2.1.1 Bacteria -- 8.2.1.2 Yeast -- 8.2.1.3 Fungi.

8.2.1.4 Biosynthesis of Metal Nanoparticles by Plants -- 8.2.1.5 Biosynthesis of Metal Nanoparticles by Biomolecules -- 8.3 Applications -- 8.4 Conclusions -- Acknowledgement -- References -- 9 Ionic Discotic Liquid Crystals: Recent Advances and Applications -- 9.1 Introduction -- 9.2 Part I: Chromonic LCs -- 9.2.1 Structure-Property Relationship of Chromonic Mesogens -- 9.2.2 Applications of Chromonic Mesophases -- 9.2.2.1 Polarizing Materials -- 9.2.2.2 Monolayer and Multilayer Deposition of Chromonic LCs -- 9.2.2.3 Micropatterned Anisotropic Chromonic Films -- 9.2.2.4 Organic Electronics -- 9.3 Part II: Thermotropic Ionic Discotic Liquid Crystals -- 9.3.1 Classification Based on Different Cores -- 9.3.1.1 Benzene -- 9.3.1.2 Triphenylene -- 9.3.1.3 Perylene -- 9.3.1.4 Anthracene -- 9.3.1.5 Tricycloquinazoline -- 9.3.1.6 Triazolephthalocyanine -- 9.3.1.7 Porphyrin -- 9.3.1.8 Hexa-peri-hexabenzocoronene -- 9.3.1.9 4,4-Difluoro-4-bora-3a, 4a-diaza-s-indacene (BODIPY) -- 9.3.1.10 Trisimidazole -- 9.3.1.11 Quinolizinophenanthridinylium Cation -- 9.3.1.12 Trialkyltriazatriangulenium Cation -- 9.3.1.13 2,4,6-Triarylpyrylium Tetrafluoroborates -- 9.3.2 Ionic Metallomesogens -- 9.3.3 Ionic Discotic Compounds of Crown Ethers -- Acknowledgement -- References -- 10 Role of Advanced Materials as Nanosensors in Water Treatment -- 10.1 Introduction -- 10.2 Nanoparticles -- 10.3 Different Fabrication Methods of Nanoparticles -- 10.4 Core Material/Nanofillers -- 10.4.1 Synthesis of Fe3O4 Nanoparticles -- 10.4.2 Synthesis of TiO2 Nanoparticles -- 10.4.3 Synthesis of CdS, PbS and CuS Nanoparticles [10] -- 10.4.4 Synthesis of SiO2 Nanoparticles -- 10.5 Shell Material/Nanomatrix -- 10.5.1 Au Nanoparticles -- 10.5.2 Ag Nanoparticles -- 10.6 Core-Shell Material -- 10.6.1 SiO2@Ag Core-Shell Nanocomposites -- 10.6.2 SiO2@Au Core-Shell Nanocomposites.

10.6.3 Fe3O4@Au Core-Shell Nanocomposites -- 10.6.4 Ag@Au Core-Shell Nanocomposites -- 10.7 Properties of Metal Nanoparticles and Core-Shell Nanocomposites -- 10.8 Detection of Heavy Metals Using Smart Core-Shell Nanocomposites -- 10.9 Conclusions -- Acknowledgement -- References -- Part 3: Advanced Structures and Properties -- 11 Application of Bioconjugated Nanoporous Gold Films in Electrochemical Biosensors -- 11.1 Introduction -- 11.2 Fabrication of Nanoporous Gold -- 11.2.1 Dealloying Procedure -- 11.2.2 Template-Assisted Method -- 11.2.3 Electrochemical Method -- 11.3 Nucleic Acids (NAs)-Based Biosensors -- 11.3.1 NPG-Based DNA Sensors -- 11.3.2 NPG-Based Aptasensors -- 11.4 Protein-Nanostructured Gold Bioconjugates in Biosensing -- 11.4.1 Conjugation of Proteins to Nanoparticles -- 11.4.1.1 Covalent Protein-Nanoparticle Conjugates -- 11.4.1.2 Noncovalent Protein-Nanoparticle Conjugation -- 11.4.2 Nanoporous Materials -- 11.4.2.1 Enzyme-Modified NPG-Based Biosensors -- 11.4.2.2 Antibody-Modified NPG-Based Biosensors -- 11.4.2.3 Bioconjugation of Other Proteins to NPG -- 11.5 Conclusion -- References -- 12 Combination of Molecular Imprinting and Nanotechnology: Beginning of a New Horizon -- 12.1 Introduction -- 12.1.1 What Is "Imprinting"? -- 12.1.2 The MIP 'Rule of Six' -- 12.1.3 Downside of 'Imprinted Materials' -- 12.1.4 How to Overcome the Problems -- 12.2 Classification of Imprinted Nanomaterials -- 12.2.1 Imprinting onto the Nanostructure Surfaces -- 12.2.1.1 Imprinted Novel Metal Nanoparticles (NPs) -- 12.2.1.2 Imprinted Magnetic Nanoparticle -- 12.2.1.3 Silica Nanoparticles -- 12.2.1.4 Core-Shell Nanoparticle -- 12.2.1.5 Quantum Dots -- 12.2.1.6 Nanobeads -- 12.2.1.7 Nanowires/Fibers -- 12.2.1.8 Carbon Nanotubes (CNTs) -- 12.2.1.9 TiO2 Nanotubes -- 12.2.1.10 Nanocomposite Materials -- 12.2.2 Thin-Film Imprinting.

12.3 Imprinted Materials at Nanoscale -- 12.3.1 Imprinted Nanoparticle -- 12.3.2 Nanospheres -- 12.3.3 Comparative Study between Micro- and Nano-imprinted Materials -- 12.3.4 Imprinted Nanogel -- 12.3.5 Nanoimprint Lithography -- 12.4 Conclusions and Future Outlook -- Acknowledgements -- References -- 13 Structural, Electrical and Magnetic Properties of Pure and Substituted BiFeO3 Multiferroics -- 13.1 Introduction -- 13.1.1 Ferroics -- 13.1.2 Classification of Ferroics -- 13.1.2.1 Some Important Features of Ferroelectrics -- 13.1.2.2 Ferromagnetics -- 13.1.2.3 Ferroelastic -- 13.1.2.4 Ferrotoroidic -- 13.1.3 Multiferroics -- 13.1.3.1 History of Multiferroics -- 13.1.3.2 Properties of Multiferroics -- 13.1.4 Previous Work Done on Multiferroic BiFeO3 -- 13.2 Synthesis of Materials -- 13.2.1 Materials Preparation Method -- 13.2.1.1 Sol-Gel Process -- 13.2.1.2 Wet Chemical Method -- 13.2.1.3 Autocombustion Technique -- 13.2.1.4 Gel Casting Method -- 13.2.1.5 Coprecipitation Method -- 13.2.1.6 Hydrothermal Method -- 13.2.1.7 Solid-State Reaction Method -- 13.3 Structural and Morphological Analyses -- 13.3.1 X-ray Diffraction -- 13.3.1.1 Introduction -- 13.3.1.2 A Brief Theory of X-ray Diffraction -- 13.3.1.3 Full-Pattern Analysis - the Rietveld Method -- 13.3.1.4 Actual Experimental Condition for X-ray Diffraction -- 13.3.1.5 Some of the Important Results on Structural Analysis -- 13.3.2 Morphological (SEM) Analysis -- 13.3.2.1 Actual Experiment -- 13.3.2.2 Some of the Important Results -- 13.4 Electrical Properties -- 13.4.1 Dielectric Studies -- 13.4.1.1 Basic Concept of Dielectric Constant -- 13.4.1.2 Factors Affecting the Dielectric Constant of a Material -- 13.4.1.3 The Dielectric Loss -- 13.4.1.4 Dielectric Measurements -- 13.4.1.5 Results and Discussion -- 13.4.2 DC Conductivity -- 13.4.2.1 Basic Laws and Electrical Properties of Materials.

13.4.2.2 Measurement.
Abstract:
This book provides detailed reviews of a range of nanostructures used in the construction of biosensors as well as the applications of these biosensor nanotechnologies in the biological, chemical, and environmental monitoring fields Biological sensing is a fundamental tool for understanding living systems, but also finds practical application in medicine, drug discovery, process control, food safety, environmental monitoring, defense, and personal security. Moreover, a deeper understanding of the bio/electronic interface leads us towards new horizons in areas such as bionics, power generation, and computing. Advances in telecommunications, expert systems, and distributed diagnostics prompt us to question the current ways we deliver healthcare, while robust industrial sensors enable new paradigms in R&D and production. Despite these advances, there is a glaring absence of suitably robust and convenient sensors for body chemistries. This book examines some of the emerging technologies that are fueling scientific discovery and underpinning new products to enhance the length and quality of our lives. The 14 chapters written by leading experts cover such topics as: ZnO and graphene microelectrode applications in biosensing Assembly of polymers/metal nanoparticles Gold nanoparticle-based electrochemical biosensors Impedimetric DNA sensing employing nanomaterials Graphene and carbon nanotube-based biosensors Computational nanochemistry study of the BFPF green fluorescent protein chromophore Biosynthesis of metal nanoparticles Bioconjugated-nanoporous gold films in electrochemical biosensors The combination of molecular imprinting and nanotechnology Principles and properties of multiferroics and ceramics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Electronic Access:
Click to View
Holds: Copies: