Cover image for Graphene Materials : Fundamentals and Emerging Applications.
Graphene Materials : Fundamentals and Emerging Applications.
Title:
Graphene Materials : Fundamentals and Emerging Applications.
Author:
Tiwari, Ashutosh.
ISBN:
9781119131823
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (424 pages)
Series:
Advanced Material Series
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Foreword -- Part 1: Fundamentals of Graphene and Graphene-Based Nanocomposites -- 1 Graphene and Related Two-Dimensional Materials -- 1.1 Introduction -- 1.2 Preparation of Graphene Oxide by Modified Hummer's Method -- 1.3 Dispersion of Graphene Oxide in Organic Solvents -- 1.4 Paper-like Graphene Oxide -- 1.5 Thin Films of Graphene Oxide and Graphene -- 1.6 Nanocomposites of Graphene Oxide -- 1.7 Graphene-Based Materials -- 1.8 Graphene-like 2D Materials -- 1.8.1 Tungsten Sulfide -- 1.8.1.1 Different Methods for WS2 Preparation -- 1.8.1.2 Properties of WS2 -- 1.8.1.3 WS2 and Reduced Graphene Oxide Nanocomposites -- 1.8.2 Molybdenum Sulfide -- 1.8.3 Tin Sulfide -- 1.8.4 Tin Selenide -- 1.8.5 Manganese Dioxide -- 1.8.6 Nickel Oxide -- 1.8.7 Boron Nitride -- 1.9 Conclusion -- References -- 2 Surface Functionalization of Graphene -- 2.1 Introduction -- 2.2 Noncovalent Functionalization of Graphene -- 2.3 Covalent Functionalization of Graphene -- 2.3.1 Nucleophilic Substitution Reaction -- 2.3.2 Electrophilic Substitution Reaction -- 2.3.3 Condensation Reaction -- 2.3.4 Addition Reaction -- 2.4 Graphene-Nanoparticles -- 2.4.1 Metals NPs: Au, Pd, Pt, Ag -- 2.4.2 Metal oxide NPs: ZnO, SnO2, TiO2, SiO2, RuO2, Mn3O4, Co3O4, and Fe3O4 -- 2.4.3 Semiconducting NPs: CdSe, CdS, ZnS, CdTe and Graphene QD -- 2.5 Conclusion -- References -- 3 Architecture and Applications of Functional Th ree-dimensional Graphene Networks -- 3.1 Introduction -- 3.1.1 Synthesis of 3D Porous Graphene-Based Materials -- 3.1.1.1 Self-assembly Approach -- 3.1.1.2 Template-assisted Synthesis -- 3.1.1.3 Direct Deposition -- 3.1.1.4 Covalent Linkage -- 3.1.2 Overview of 3DG Structures -- 3.1.2.1 3DG Framework -- 3.1.2.2 3DG Sphere or Ball -- 3.1.2.3 3DG Film -- 3.1.2.4 3DG Fibre -- 3.2 Applications -- 3.2.1 Supercapacitor.

3.2.1.1 Battery -- 3.2.2 Fuel Cells -- 3.2.3 Sensors -- 3.2.4 Other Applications -- 3.3 Summary, Conclusion, Outlook -- Abbreviations -- References -- 4 Covalent Graphene-Polymer Nanocomposites -- 4.1 Introduction -- 4.2 Properties of Graphene for Polymer Reinforcement -- 4.3 Graphene and Graphene-like Materials -- 4.4 Methods of Production -- 4.5 Chemistry of Graphene -- 4.6 Conventional Graphene Based Polymer Nanocomposites -- 4.7 Covalent Graphene-polymer Nanocomposites -- 4.8 Grafting-From Approaches -- 4.8.1 Living Radical Polymerizations -- 4.8.2 Other Approaches -- 4.9 Grafting-to Approaches -- 4.9.1 Graphene Oxide-based Chemistry -- 4.9.2 Crosslinking Reactions -- 4.9.3 Click Chemistry -- 4.9.4 Other Graft ing-to Approaches -- 4.10 Conclusions -- References -- Part 2: Emerging Applications of Graphene in Energy, Health, Environment and Sensors -- 5 Magnesium Matrix Composites Reinforced with Graphene Nanoplatelets -- 5.1 Introduction -- 5.1.1 Magnesium -- 5.1.2 Metal Matrix Composites -- 5.1.3 Graphene Nanoplatelets (GNPs) -- 5.2 Effect of Graphene Nanoplatelets on Mechanical Properties of Pure Magnesium -- 5.2.1 Introduction -- 5.2.2 Synthesis -- 5.2.3 Microstructural Characterization -- 5.2.4 Crystallographic Texture Measurements -- 5.2.5 Mechanical Characterization -- 5.2.6 Conclusions -- 5.3 Synergetic Effect of Graphene Nanoplatelets (GNPs) and Multi-walled Carbon Nanotube (MW-CNTs) on Mechanical Properties of Pure Magnesium -- 5.3.1 Introduction -- 5.3.2 Synthesis -- 5.3.3 Microstructure Characterization -- 5.3.3.1 Raw Materials -- 5.3.3.2 Microstructure of Composites -- 5.3.4 Mechanical Characterization -- 5.3.5 Conclusions -- 5.4 Effect of Graphene Nanoplatelets (GNPs) Addition on Strength and Ductility of Magnesium-Titanium Alloys -- 5.4.1 Introduction -- 5.4.2 Synthesis -- 5.4.2.1 Primary Processing -- 5.4.2.2 Secondary Processing.

5.4.3 Microstructure Characterization -- 5.4.4 Mechanical Characterization -- 5.4.5 Conclusions -- 5.5 Effect of Graphene Nanoplatelets on Tensile Properties of Mg-1%Al-1%Sn Alloy -- 5.5.1 Introduction -- 5.5.2 Synthesis -- 5.5.3 Microstructure Characterization -- 5.5.4 Mechanical Characterization -- 5.5.5 Conclusions -- Acknowledgments -- References -- 6 Graphene and Its Derivatives for Energy Storage -- 6.1 Introduction -- 6.2 Graphene in Lithium Batteries -- 6.2.1 Lithium Ion Batteries -- 6.2.2 Lithium-Oxygen Batteries -- 6.2.3 Lithium-Sulfur Batteries -- 6.3 Graphene in Supercapacitors -- 6.4 Summary -- References -- 7 Graphene-Polypyrrole Nanocomposite: An Ideal Electroactive Material for High Performance Supercapacitors -- 7.1 Introduction -- 7.2 Renewable Energy Sources -- 7.3 Importance of Energy Storage -- 7.4 Supercapacitors -- 7.5 Principle and Operation of Supercapacitiors -- 7.6 Electrode Materials for Supercapacitors -- 7.7 Graphene-based Supercapacitors and Th eir Limitations -- 7.8 Graphene-Polymer-Composite-based Supercapacitors -- 7.9 Graphene-Polypyrrole Nanocomposite-based Supercapacitiors -- 7.10 Fabrication of Graphene-Polypyrrole Nanocomposite for Supercapacitiors -- 7.11 Performance of Graphene-Polypyrrole Nanocomposite-based Supercapacitors -- 7.12 Summary and Outlooks -- References -- 8 Hydrophobic ZnO Anchored Graphene Nanocomposite Based Bulk Hetro-junction Solar Cells to Improve Short Circuit Current Density -- 8.1 Introduction -- 8.2 Economic Expectations of OPV -- 8.3 Device Architecture -- 8.3.1 Bulk-heterojunction Structure -- 8.4 Operational Principles -- 8.4.1 Series and Shunt Resistance -- 8.4.2 Standard Test Conditions -- 8.5 Experimental procedure for synthesis of hydrophobic nanomaterials -- 8.5.1 Zinc Oxide Nanoparticles -- 8.5.2 ZnO Nanoparticle Decorated Graphene (Z@G) Nanocomposite.

8.6 Characterization of Synthesized ZnO Nanoparticles and ZnO Decorated Graphene (Z@G) Nanocomposite -- 8.6.1 Structural Analysis -- 8.6.2 Morphological Analysis -- 8.6.3 Optical Analysis -- 8.6.3.1 UV-Vis Absorption Spectroscopy -- 8.6.3.2 Photoluminescence Spectroscopy -- 8.6.4 FTIR (Fourier Transform Infrared) Spectroscopy -- 8.6.5 Raman Spectroscopy -- 8.6.6 Hydrophobicity Measurement -- 8.7 Hybrid Solar Cell Fabrication and Characterization -- 8.7.1 Device Fabrication -- 8.7.2 J-V (Current density-Voltage) Characteristics -- 8.8. Conclusion -- Acknowledgement -- References -- 9 Three-dimensional Graphene Bimetallic Nanocatalysts Foam for Energy Storage and Biosensing -- 9.1 Background and Introduction -- 9.1.1 Biosensors -- 9.1.2 Fuel Cells -- 9.1.3 Bimetallic Nanocatalysts -- 9.1.4 Carbon Supported Materials -- 9.1.5 Rotating Disk Electrode -- 9.1.6 Cyclic Voltammetry and Chronoamperometric Techniques -- 9.1.7 Methods of Estimating Limit of Detection (LOD) -- 9.1.8 CO Stripping for the Estimation of the Catalyst Surface Area -- 9.1.9 Brunauer, Emmett and Teller (BET) Measurement -- 9.1.10 Motivations of the Study -- 9.2 Preparation and Characterization of Th ree Dimensional Graphene Foam Supported Platinum-Ruthenium Bimetallic Nanocatalysts for Hydrogen Peroxide Based Electrochemical Biosensors -- 9.2.1 Introduction -- 9.2.2 Experimental -- 9.2.2.1 Materials -- 9.2.2.2 Growth of the 3D Graphene Foam -- 9.2.2.3 Synthesis and Modifi cation of PtRu Nanoparticle Catalyst -- 9.2.2.4 Characterization of PtRu Nanocatalysts with Different Carbon Supported Materials -- 9.2.2.5 Electrochemical measurements -- 9.2.3 Results and Discussion -- 9.2.3.1 Physicochemical Characterization of PtRu Nanocatalysts with Different Carbon Supported Materials -- 9.2.3.2 Electrochemical Characterization and Performance.

9.2.3.3 Electrochemical Active Surface Area Measurement -- 9.2.3.4 Amperometric Measurement of H2O2 -- 9.2.3.5 Interference Tests -- 9.2.3.6 Stability and Durability of the PtRu/3D GF Nanocatalyst -- 9.2.4 Conclusion for H2O2 Detection in Biosensing -- 9.3 Th ree dimensional graphene Foam Supported Platinum- Ruthenium Bimetallic Nanocatalysts for Direct Methanol and Direct Ethanol Fuel Cell Applications -- 9.3.1 Introduction -- 9.3.2 Experimental -- 9.3.2.1 Materials -- 9.3.2.2 Growth of the 3D Graphene Foam -- 9.3.2.3 Synthesis and Modifi cation of PtRu Nanoparticle Catalyst -- 9.3.2.4 Characterization of PtRu Nanocatalysts -- 9.3.2.5 Electrochemical Measurements -- 9.3.3 Results and Discussion -- 9.3.3.1 Physicochemical Characterization of PtRu Nanocatalysts with Diff erent Carbon Supported Materials -- 9.3.3.2 Surface Area Measurements -- 9.3.3.3 Methanol and Ethanol Oxidation Measurements -- 9.3.4 Conclusion for Methanol and Ethanol Oxidation Reactions in Energy Storage -- 9.4 Conclusions -- Acknowledgments -- References -- 10 Electrochemical Sensing and Biosensing Platforms Using Graphene and Graphene-based Nanocomposites -- 10.1 Introduction -- 10.2 Fabrication of Graphene and Its Derivatives -- 10.2.1 Exfoliation -- 10.2.2 Chemical Vapor Deposition (CVD) -- 10.2.3 Miscellaneous Techniques -- 10.3 Properties of Graphene and Its Derivatives -- 10.4 Electrochemistry of Graphene -- 10.5 Graphene and Graphene-Based Nanocomposites as Electrode Materials -- 10.6 Electrochemical Sensing/Biosensing -- 10.6.1 Glucose -- 10.6.2 DNA/Proteins/Cells -- 10.6.3 Other Small Electroactive Analytes -- 10.7 Challenges and Future Trends -- References -- 11 Applications of Graphene Electrodes in Health and Environmental Monitoring -- 11.1 Biosensors Based on Nanostructured Materials -- 11.2 Graphene Nanomaterials Used in Electrochemical (bio) Sensors Fabrication.

11.3 Miniaturized Graphene Nanostructured Biosensors for Health Monitoring.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: