Cover image for Advances in Nanotechnology. Volume 3.
Advances in Nanotechnology. Volume 3.
Title:
Advances in Nanotechnology. Volume 3.
Author:
Bartul, Zacharie.
ISBN:
9781617617515
Personal Author:
Physical Description:
1 online resource (356 pages)
Series:
Advances in Nanotechnology ; v.3

Advances in Nanotechnology
Contents:
ADVANCES IN NANOTECHNOLOGY, VOLUME 3 -- ADVANCES IN NANOTECHNOLOGY, VOLUME 3 -- LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA -- CONTENTS -- PREFACE -- Chapter 1CURRENT DIRECTIONS IN NANOMACHINING -- Abstract -- 1. Nanomachining -- 1.1. Basic Elements of Molecular Dynamics Modeling -- 1.1.1. Material Representation and Microstructure -- 1.1.2. Atomic Interaction -- 1.1.2.1. Pair Potentials -- 1.1.2.2. Many-Body Potentials -- 1.1.3. Systems Dynamics and Numerical Description -- 1.1.4. Boundary Conditions -- 1.2. Design and Requirements for State-of-the-Art MD Cutting ProcessSimulations -- 1.3. Capabilities of MD for Nanoscale Material Removal Process Analysis -- 1.3.1. Analysis of Microstructure and Deformation -- 1.3.2. Obtaining Cutting Forces, Stress and Temperature -- 1.4. Advances and Recent Developments in Material Removal ProcessSimulation -- 1.4.1. Three-Dimensional Surface Machining Simulation -- 2. Micromachining -- 2.1.1. Definitions and Technological Possibilities -- 3.1.2. Main Applications of Micromachining -- 2.2. Microturning -- 2.2.1. Characteristic Features and Applications -- 2.2.2. Microturning Tools and Tooling Systems -- 2.2.3. Machine Tools for Microturning -- 2.3 Microdrilling -- 2.3.1. Characteristic Features and Applications -- 2.3.2. Microdrills and Tooling Systems -- 2.3.3. Machine Tools for Microdrilling -- 2.4. Micromilling -- 2.4.1. Characteristic Features and Applications -- 2.4.2. Micromills and Tooling Systems -- 2.4.3. Machine Tools for Micromilling -- 2.5. Product Quality in Micromachining -- 2.5.1. Quality Challenges in Micromachining -- 2.5.2. Burr Formation in Micromachining Operations -- 2.5.3. Surface Quality Inspection of Micromachining Products -- 3. Application of Micro and Nanomachining -- 3.1. Typical Machining Methods -- 3.1.1. Diamond Turning -- 3.2. Applications in Optical Manufacturing.

3.2.1. Aspheric Lens -- 3.2.2. Fresnel Lens -- 3.2.3. Micro-structured Components -- 3.3. Semiconductor and Electronic Applications -- 3.3.1. Semiconductor Wafer Production -- 3.3.2. LSI Substrate Planarization -- 4. Conclusion -- Acknowledgements -- References -- Chapter 2BA(TI,ZR)O3 - FUNCTIONAL MATERIALS:FROM NANOPOWDERS TO BULK CERAMICS -- Abstract -- 1. State of the Art for the BaTiO3-BaZrO3 System -- 2. Preparation and Characterization of Ba(Ti,Zr)O3Nanopowders: Influence of the Processing Methodon the Structural and Morphological Properties -- 2.1. Synthesis -- 2.2. Formation Mechanism -- 2.3. Phase Composition and Structure -- 2.4. Morphology -- 3. Preparation and Characteristics of Ba(Ti,Zr)O3 Ceramics: Effectof Composition and Grain Size on the Functional Properties -- 3.1. Ceramics from Powders Prepared by Classical Solid State Reaction -- 3.1.1. Phase Composition and Microstructure -- 3.1.2. Dielectric Properties -- (a) The effect of frequency on the dielectric data for the BaTi0.9Zr0.1O3 ceramics sinteredat different temperatures (size effects) -- (b) The role of composition on the dielectric properties of BaZrxTi1-xO3 ceramics -- (c) Frequency-dependence of the dielectric constant -- 3.1.3. Ferroelectric Properties (Polarization-Field Responses) -- (a) Effect of composition on the P(E) loops -- (b) Effect of grain size on the P(E) loops -- (c) Characterization by FORC diagrams -- 3.2. Ceramics from Powders Prepared by the Modified Pechini Route -- 3.2.1. Ceramics Produced by Classical Sintering -- (a) Phase composition and microstructure -- (b) Dielectric properties -- 3.2.2. Ceramics Produced by Spark Plasma Sintering (SPS) -- (a) Phase composition, structure and microstructure -- (b) Dielectric behavior -- 4. Conclusions -- Acknowledgements -- References.

Chapter 3PHASE MIXTURE MODELS AND UNIT-CELLCALCULATIONS FOR THE EFFECTIVE ELASTICAND THERMAL PROPERTIESOF NANOCRYSTALLINE CERAMICS -- Abstract -- 1. Introduction -- 2. Phase Mixture Models and Micromechanical Bounds -- 3. Unit-Cell Geometries and Arrangement -- 4. Effective Young's Modulus of Isotropic NanocrystallineCeramics -- 5. Effective Thermal Conductivity of Isotropic NanocrystallineCeramics -- 6. Effective Thermal Conductivity of Anisotropic NanocrystallineCeramics -- 7. Conclusion -- Acknowledgment -- References -- Chapter 4APPLICATIONS AND NANOMANUFACTURINGOF MODERN MICROFLUIDIC DEVICES -- Abstract -- 1. Introduction -- 1.1. General Overview on Microfluidic Devices -- 1.2. Outline of the Chapter -- 2. Applications of Microfluidic Devices -- 2.1. Clinic Applications -- 2.2. Bioanalytical Applications -- 2.3. Environmental Sciences -- 3. New Progress of Nanomanufacturing Technologies Applied inthe Manufacturing of Microfluidic Devices -- 3.1. Replication Methods Based on Duplicating a Pattern from a MasterMold to a Substrate -- 3.1.1. Thermal Nanoimprint Lithography (Micro Hot-Embossing) -- (a) Principle -- (b) Demonstrations of Capability -- (c) Challenge and solution -- 3.1.2. Micro-injection Molding -- (a) Principle -- (b) Demonstrations of capability -- (c) Challenges and solutions -- 3.1.3. Soft Lithography -- (a) Principle -- (b) Demonstration of capability -- (c) Implementation methods -- 3.1.4. Other Replication Based Fabrication Technique -- 3.2. Direct Writing Techniques -- 3.2.1. Electron Beam Writing -- 3.2.2. Proton Beam Writing -- 3.2.3. Two-Photon Microfabrication -- 4. Bonding Processes -- 4.1. Thermal Bonding -- 4.2. Solvent Bonding -- 4.3. UV Adhesive Bonding -- 5. Integration of Microfluidic Devices -- 6. Metrology Techniques -- 6.1. SEM (Scanning Electron Microscope) -- 6.2. AFM (Atomic Force Microscope).

6.3. VSI (Vertical Scanning Interferometer) -- 6.4. Profile Stitching Technique -- 7. Development Trends of Microfluidic Devices -- 7.1. Commercialization and Mass Production -- 7.2. Material Transition: Usage of Polymer in Stead of Silicon and Glass -- 7.3. Higher Integration -- 8. Summary -- References -- Chapter 5FABRICATION OF BIOMOLECULAR NANOPATTERNS -- Abstract -- 1. Introduction -- 2. Moulding and Stamping -- 2.1. Nanoimprinting[17] -- 2.2. Micro/Nanocontact Printing -- 3. Scanning Probe Lithography -- 3.1. Dip-Pen Nanolithography -- 3.2. Nanoshaving and Nanografting -- 3.3. Nanopipettes and Nanonanofountain Probe -- 4. Electron Beam Lithography -- 5. Self-Assembly -- 5.1. DNA-Templated Chemistry -- 5.2. Colloidal Lithography -- 5.3. Block-Copolymer Lithography -- 6. Other Strategies -- 7. Summary and Outlook -- References -- Chapter 6RESISTANCE SWITCHING EFFECTS OF METAL OXIDETHIN FILMS FOR NONVOLATILE RANDOM ACCESSMEMORY APPLICATIONS -- Abstract -- 1. Introduction -- 2. Resistance Switching Effects -- 3. Several Important Perovskite Metal Oxide Thin Films -- 1. Manganite Thin Films -- 2. Doped SrZrO3 Thin Films -- 3. SrTiO3 Thin Films -- 4. Bi4Ti3O12 Thin Films -- 4. Several Important Binary Transition Metal Oxide Thin Films -- 1. NiO Thin Films -- 2. TiO2, ZrO2, and HfO2 Thin Films -- 3. ZnO Thin Films -- 4. Al2O3, CuO, MnOx, and MgOx Thin Films -- 5. Conclusions -- Acknowledgments -- References -- Chapter 7INVESTIGATION OF PEROVSKITE LANTHANUMMANGANITE NANOPARTICLES -- Abstract -- Introduction -- Polymorphism and Reversibility of Phase Transitionsin LaMnO3+δ -- Methods of Lanthanum Manganite Synthesis -- Features of Nanostructuring in Lanthanum Manganites forDifferent Synthesis Methods. Monodisperse and PolydisperseStructures -- Conclusion -- Acknowledgments -- References -- Chapter 8NANOTECHNOLOGY - COMMENTARY -- Preamble.

The Perspective -- Current World Scenario -- Speciality Nanomaterials -- Nanoengines of Creation: The Drexler - Smalley Debate -- Environment, Health and Safety -- References -- Chapter 9PREPARATION AND PROPERTIES OF ZIRCONIANANOCRYSTALLINE CERAMICS -- 1. Introduction -- 1.1. Advanced Forming Technology -- 1.2. Ceramic Nanocomposites -- 1.3. Near-Net Shaping Process of Nanoceramics -- 1.4. Tribological Properties of Nanoceramics -- 2. Experimental Methodology -- 2.1. Powder Preparation and Characterization -- 2.2. Pellet Characterization -- 2.3. Performance Test -- 3. Preparations of Y-TZP Nanoceramics by Gelcasting-PressingMethod [6] -- 4. Effect of Dopant on Densification of Y-TZP Nanoceramics [15-17] -- 5. Near-Net Process of the Y-TZP Based Nanoceramics [19,21] -- 6. Tribological Properties of Y-TZP Based Nanoceramics -- 6.1. Influence of Grain Size on Tribological Properties -- 6.2. Influence of the Additive on Tribological Properties -- Acknowledgments -- References -- Chapter 10ELECTRICAL BEHAVIOR OF LN2TIO5 (LN= DY-YB)NANOSTRUCTURAL CERAMICS -- Abstract -- 1. Introduction -- 2. Experimental -- 3. Results and Discussion -- Conclusions -- References -- Chapter11DEAE-DEXTRANANDDEAE-DEXTRAN-MMAGRAFTCOPOLYMERFORNONVIRALDELIVERYOFNUCLEICACIDS -- Abstract -- 1.Introduction -- 2.DEAE-Dextran -- 2.1.CharacteristicProperties -- 2.1.1.Solubility -- 2.1.2.ChemicalDescription -- 2.2.BiochemicalSpecification -- 2.2.1.EnhancementofProteinandNucleicAcidUptake -- 2.2.2.EnhancementofProteinUptake -- 2.2.3.EnhancementofNucleicAcidUptake -- 2.2.4.TheEnhancementofViralInfectivity -- 2.2.5.InhibitionofTumorGrowth -- 2.2.6.EnhancementofInterferonProduction -- 2.2.7.UseofDEAE-DextranasanAdjuvant -- 3.TheComplexbetweenDNAandDEAE-Dextran -- 3.1.TheReactionbetweenDNAandDEAE-Dextran -- 3.2.TheRelationbetweenpHChangeandtheAmountofComplexbyDNAandDEAE-Dextran.

3.3.TheRelationsbetweenpHChangeandtheDNA/DEAE-DextranRatioinaComplex.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: