Cover image for Vortex Dominated Flows : A Volume Celebrating Lu Ting's 80th Birthday.
Vortex Dominated Flows : A Volume Celebrating Lu Ting's 80th Birthday.
Title:
Vortex Dominated Flows : A Volume Celebrating Lu Ting's 80th Birthday.
Author:
Blackmore, Denis.
ISBN:
9789812703439
Personal Author:
Physical Description:
1 online resource (300 pages)
Contents:
Contents -- Preface -- Foreword by Joeseph B . Keller -- 1 . Circular Discrepancy and a Monte Carlo Algorithm for Generating a Low Circular Discrepancy Sequence -- Abstract -- 1.1 Introduction -- 1.2 Circular discrepancy -- 1.3 Measuring -- 1.4 The vortex points -- 1.5 Other sequences -- 1.5.1 Mapping the square to a disc -- 1.5.2 Hammersley sequence -- 1.5.3 Antonov-Saleev variant of the Sobol sequence -- 1.5.3.1 Example -- 1.6 Numerical results 1 -- 1.7 Numerical results 2 -- 1.8 Conclusion -- Acknowledgement -- Bibliography -- 2 . Periodic and Quasiperiodic Motion of Point Vortices -- Abstract -- 2.1 Introduction -- 2.2 Symplectic preliminaries -- 2.3 Fixed point theorems -- 2.4 Hamiltonian formulation of point vortex dynamics -- 2.5 Decomposition of the Hamiltonian -- 2.6 Estimates of the non-integrable perturbations -- 2.7 Application of KAM and fixed point theorems -- 2.8 Concluding remarks -- Acknowledgment -- Bibliography -- 3 . Experiments on Heave/Pitch Limit-Cycle Oscillations of a Supercritical Airfoil Close to the Transonic Dip -- Abstract -- 3.1 Introduction -- 3.2 Test set-up -- 3.3 Equations of motion -- 3.3.1 Structural-dynamic parameters -- 3.3.2 Method of flutter calculations -- 3.4 Results and discussion -- 3.4.1 Transonic dip -- 3.4.2 Limit-cycle oscillations -- 3.4.3 Energy exchange in limit-cycle oscillations -- 3.5 Concluding remarks -- Acknowledgment -- Bibliography -- 4 . Vortices in Superconductors -- Abstract -- 4.1 Introduction -- 4.2 The Ginzburg-Landau model -- 4.2.1 The time-dependent Ginzburg-Landau equations -- 4.2.2 A simplified GL model valid for high values of K. -- 4.3 The vortex state in non-ideal superconductors -- 4.3.1 Pinning of vortices -- 4.3.2 Josephson junctions -- 4.3.3 Surface superconductivity in high fields -- 4.3.4 Thermal fluctuations -- Acknowledgment -- Bibliography.

5 . Accurate Numerical Simulation of Three-dimensional Lid-driven Cavity Flows with Different Span Lengths -- Abstract -- 5.1 Introduction -- 5.2 Formulation and numerical method -- 5.2.1 Governing equations -- 5.2.2 Numerical method -- 5.3 Results -- 5.4 Concluding remarks -- Acknowledgment -- Bibliography -- 6 . Geometric, Stochastic and Algebraic Vortices -- Abstract -- 6.1 Introduction -- 6.2 Geometric vortices -- 6.2.1 Conservation laws -- 6.2.2 Slender vortices -- 6.2.3 Diffusive vortices -- 6.3 Stochastic vortices -- 6.3.1 Proper orthogonal decomposition -- 6.3.2 A de-noising definition of coherent vortices -- 6.3.3 A probabilistic version of the vorticity equation -- 6.4 Algebraic vortices -- 6.4.1 Numerical vortex methods -- 6.4.2 Adaptive wavelet method for the vorticity equation -- 6.5 Conclusions -- Acknowledgment -- Bibliography -- 7 . Experimental Investigation & Numerical Simulation of Oblique Shock/Vortex Interaction -- 7.1 Dedication to Professor Lu Ting -- 7.2 Introduction -- 7.3 Experimental investigation -- 7.3.1 Experimental setup -- 7.3.2 Measurement techniques -- 7.3.3 Experimental program -- 7.4 Numerical investigation -- 7.4.1 Computational setup and boundary conditions -- 7.5 Results -- 7.5.1 Experimental results -- 7.5.1.1 Weak/moderate interaction -- 7.5.2 Numerical results -- 7.6 Conclusions -- Bibliography -- 8 . Breakdown of Slender Vortices: The State of the Art -- Abstract -- 8.1 Introduction -- 8.2 Inviscid incompressible flow -- 8.3 Viscous incompressible flow -- 8.4 Concluding remarks -- Bibliography -- 9 . A Numerical Analysis of Vortex Dislocation in Wake-type Flow with Different Spanwise Nonuniformity -- Abstract -- 9.1 Introduction -- 9.2 Numerical simulation and method -- 9.3 Numerical results -- 9.3.1 Local spanwise nonuniformity -- 9.3.2 Stepped spanwise nonuniformity -- 9.4 Concluding remarks.

Acknowledgment -- Bibliography -- 10 . Vortex Dipole Coordinates on the Sphere -- Abstract -- 10.1 Introduction -- 10.2 The dipole coordinate system -- 10.3 One and two dipoles -- 10.4 The fundamental interactions -- Exchange scattering mode -- Loop-scattering mode -- 10.5 Concluding remarks -- Bibliography -- 11 . Magneto-Fluid-Dynamic Flow Control -- 11.1 Dedication -- 11.2 Abstract -- 11.3 Introduction -- 11.4 Governing equations -- 11.5 Plasma models -- 11.6 Electro-fluid-dynamic interaction -- 11.7 Magneto-fluid-dynamic interaction -- 11.8 Concluding remarks -- Acknowledgment -- Bibliography -- 12 . Interaction between Longitudinal Vortices and Normal and Oblique Shocks -- Abstract -- 12.1 Introduction -- 12.2 Governing equations -- 12.3 Computational setup and boundary conditions -- 12.4 Numerical method and vortex identification -- 12.5 Results -- 12.6 Conclusions -- Bibliography -- 13 . Analysis of Rotor Vortex Wake Structure Using 3-C PIV Measurements -- Abstract -- 13.1 Introduction -- 13.2 Test set-up and 3-C PIV measurements -- 13.3 PIV data process -- 13.4 Rotation of PIV measuring plane -- 13.5 Concluding remarks -- Acknowledgments -- Bibliography -- 14 . Typical Vortex Phenomena in Flow Fields Past Space Vehicles -- Abstract -- 14.1 Introduction -- 14.2 Numerical simulation tool -- 14.3 Vortical flow effects on space vehicles -- 14.3.1 General -- 14.3.2 Influence on lift -- 14.3.3 Influence on drag -- 14.3.4 Influence on heat flux -- 14.3.5 Hot wall effects -- 14.4 Conclusions -- Bibliography.
Abstract:
Honoring the contributions of one of the field's leading experts, Lu Ting, this indispensable volume contains important new results at the cutting edge of research. A wide variety of significant new analytical and numerical results in critical areas are presented, including point vortex dynamics, superconductor vortices, cavity flows, vortex breakdown, shock/vortex interaction, wake flows, magneto-hydrodynamics, rotary wake flows, and hypersonic vortex phenomena. The book will be invaluable for those interested in the state of the art of vortex dominated flows, both from a theoretical and applied perspective. Professor Lu Ting and Joe Keller have worked together for over 40 years. In their first joint work entitled â€Periodic vibrations of systems governed by nonlinear partial differential equations”, perturbation analysis and bifurcation theory were used to determine the frequencies and modes of vibration of various physical systems. The novelty was the application to partial differential equations of methods which, previously, had been used almost exclusively on ordinary differential equations. Professsor Lu Ting is an expert in both fluid dynamics and the use of matched asymptotic expansions. His physical insight into fluid flows has led the way to finding the appropriate mathematical simplications used in the solutions to many difficult flow problems.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: