Cover image for Time-Dependent Density-Functional Theory : Concepts and Applications.
Time-Dependent Density-Functional Theory : Concepts and Applications.
Title:
Time-Dependent Density-Functional Theory : Concepts and Applications.
Author:
Ullrich, Carsten A.
ISBN:
9780191626913
Personal Author:
Physical Description:
1 online resource (541 pages)
Series:
Oxford Graduate Texts
Contents:
Cover -- Contents -- List of abbreviations -- 1 Introduction -- 1.1 A survey of time-dependent phenomena -- 1.2 Preview of and guide to this book -- 2 Review of ground-state density-functional theory -- 2.1 The formal framework of DFT -- 2.2 Exact properties -- 2.3 Approximate functionals -- PART I: THE BASIC FORMALISM OF TDDFT -- 3 Fundamental existence theorems -- 3.1 Time-dependent many-body systems -- 3.2 The Runge-Gross theorem -- 3.3 The van Leeuwen theorem -- 4 The time-dependent Kohn-Sham scheme -- 4.1 The time-dependent Kohn-Sham equation -- 4.2 Spin-dependent systems -- 4.3 The adiabatic approximation -- 4.4 The meaning of self-consistency in DFT and TDDFT -- 4.5 Numerical time propagation -- 5 Time-dependent observables -- 5.1 Explicit density functionals -- 5.2 Implicit density functionals -- 5.3 The time-dependent energy -- 6 Properties of the time-dependent xc potential -- 6.1 What is the universal xc functional? -- 6.2 Some exact conditions -- 6.3 Galilean invariance and the harmonic potential theorem -- 6.4 Memory and causality -- 6.5 Initial-state dependence -- 6.6 Time-dependent variational principles -- 6.7 Discontinuity upon change of particle number -- PART II: LINEAR RESPONSE AND EXCITATION ENERGIES -- 7 The formal framework of linear-response TDDFT -- 7.1 General linear-response theory -- 7.2 Spectroscopic observables -- 7.3 Linear density response in TDDFT -- 7.4 Warm-up exercise: TDDFT for two-level systems -- 7.5 Calculation of excitation energies: the Casida equation -- 7.6 The Tamm-Dancoff approximation and other simplifications -- 7.7 Excitation energies with time-dependent Hartree-Fock theory -- 8 The frequency-dependent xc kernel -- 8.1 Exact properties -- 8.2 Approximations -- 8.3 The xc kernels of the homogeneous electron liquid -- 9 Applications to atomic and molecular systems.

9.1 Excitation energies of small systems: basic trends and features -- 9.2 Molecular excited-state properties with TDDFT: an overview -- 9.3 Double excitations -- 9.4 Charge-transfer excitations -- 9.5 The Sternheimer equation -- 9.6 Optical spectra via time propagation schemes -- PART III: FURTHER DEVELOPMENTS -- 10 Time-dependent current-DFT -- 10.1 The adiabatic approximation and beyond -- 10.2 The failure of nonadiabatic local approximations in TDDFT -- 10.3 The formal framework of TDCDFT -- 10.4 The VK functional -- 10.5 Applications of TDCDFT in the linear-response regime -- 10.6 Memory effects: elasticity and dissipation -- 11 The time-dependent optimized effective potential -- 11.1 The static OEP approach for orbital functionals -- 11.2 The TDOEP scheme -- 11.3 TDOEP in the linear regime -- 12 Extended systems -- 12.1 Electronic structure and excitations of periodic solids -- 12.2 Spectroscopy of density fluctuations: plasmons -- 12.3 Optical absorption and excitons -- 12.4 TDCDFT in periodic systems -- 13 TDDFT and many-body theory -- 13.1 Perturbation theory along the adiabatic connection -- 13.2 Nonequilibrium Green's functions and the Keldysh action -- 13.3 xc kernels from many-body theory -- PART IV: SPECIAL TOPICS -- 14 Long-range correlations and dispersion interactions -- 14.1 The adiabatic-connection .uctuation-dissipation approach -- 14.2 Van der Waals interactions -- 15 Nanoscale transport and molecular junctions -- 15.1 Basic concepts -- 15.2 Transport in the linear-response limit -- 15.3 Finite-bias and non-steady-state transport -- 16 Strong-field phenomena and optimal control -- 16.1 Multiphoton ionization -- 16.2 High-order harmonic generation -- 16.3 Optimal control -- 17 Nuclear motion -- 17.1 Potential-energy surfaces -- 17.2 Ab initio molecular dynamics -- 17.3 Multicomponent TDDFT -- Appendix A: Atomic units.

A.1 Atomic units in vacuum -- A.2 Atomic units in the effective-mass approximation -- Appendix B: Functionals and functional derivatives -- Appendix C: Densities and density matrices -- Appendix D: Hartree-Fock and other wave-function approaches -- Appendix E: Constructing the xc potential from a given density -- E.1 Ground-state densities -- E.2 Time-dependent densities -- Appendix F: DFT for excited states -- F.1 Generalized Kohn-Sham schemes for excited states -- F.2 Ensemble formalism -- Appendix G: Systems with noncollinear spins -- G.1 DFT for noncollinear spins -- G.2 Linear response and excitation energies -- Appendix H: The dipole approximation -- H.1 Interaction with electromagnetic waves -- H.2 Dipole matrix elements and dipole moments -- Appendix I: A brief review of classical fluid dynamics -- I.1 Basics and ideal fluids -- I.2 Viscous fluids and dissipation -- Appendix J: Constructing the scalar xc kernel from the tensor xc kernel -- Appendix K: Semiconductor quantum wells -- K.1 Effective-mass approximation and subband levels -- K.2 Intersubband dynamics -- Appendix L: TDDFT in a Lagrangian frame -- L.1 Fluid motion in the Lagrangian and laboratory frames -- L.2 TDDFT in the Lagrangian frame -- L.3 The small-deformation approximation -- L.4 The nonlinear elastic approximation -- L.5 Validity of the VK potential and breakdown of the adiabatic approximation -- Appendix M: Inversion of the dielectric matrix -- Appendix N: Review literature on DFT and many-body theory -- Appendix O: TDDFT computer codes -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- X.
Abstract:
Time-dependent density-functional theory (TDDFT) is a quantum mechanical approach for the dynamical properties of electrons in matter. It's widely used in (bio)chemistry and physics to calculate molecular excitation energies and optical properties of materials. This is the first graduate-level text on the formal framework and applications of TDDFT.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: