Cover image for Internet of Things Applications - From Research and Innovation to Market Deployment.
Internet of Things Applications - From Research and Innovation to Market Deployment.
Title:
Internet of Things Applications - From Research and Innovation to Market Deployment.
Author:
Vermesan, Ovidiu.
ISBN:
9788793102958
Personal Author:
Physical Description:
1 online resource (373 pages)
Series:
River Publishers Series in Communications
Contents:
cover -- RIVER PUBLISHERS SERIES IN COMMUNICATIONS -- Tittle - Internet of Things From Research and Innovation to Market Deployment -- Copyright -- Dedication -- Acknowledgement -- Contents -- Preface -- Shaping the Future of Internet of Things Applications -- Editors Biography -- 1 Introduction -- 2 Putting the Internet of Things Forwardto the Next Nevel -- 2.1 The Internet of Things Today -- 2.2 The Internet of Things Tomorrow -- 2.3 Potential Success Factors -- References -- 3 Internet of Things Strategic Research and Innovation Agenda -- 3.1 Internet of Things Vision -- 3.1.1 Internet of Things Common Definition -- 3.2 IoT Strategic Research and Innovation Directions -- 3.2.1 IoT Applications and Use Case Scenarios -- 3.2.2 IoT Functional View -- 3.2.3 Application Areas -- 3.3 IoT Smart-X Applications -- 3.3.1 Smart Cities -- 3.3.2 Smart Energy and the Smart GridThere is increasing public awareness about the -- 3.3.3 Smart Mobility and Transport -- 3.3.4 Smart Home, Smart Buildings and Infrastructure -- 3.3.5 Smart Factory and Smart Manufacturing -- 3.3.6 Smart Health -- 3.3.7 Food andWater Tracking and Security -- 3.3.8 Participatory Sensing -- 3.3.9 Smart Logistics and Retail -- 3.4 Internet of Things and Related Future Internet Technologies -- 3.4.1 Cloud Computing -- 3.4.2 IoT and Semantic Technologies -- 3.5 Networks and Communication -- 3.5.1 Networking Technology -- 3.5.2 Communication Technology -- 3.5.2.1 Unfolding the potential of communication technologies -- 3.5.2.2 Correctness of construction -- 3.5.2.3 An unified theoretical framework for communication -- 3.5.2.4 Energy-limited Internet of Things devices and their communication -- 3.5.2.5 Challenge the trend to complexity -- 3.5.2.6 Disruptive approaches -- 3.5.1.1 Complexity of the networks of the future -- 3.5.1.2 Growth of wireless networks -- 3.5.1.3 Mobile networks.

3.5.1.4 Expanding current networks to future networks -- 3.5.1.5 Overlay networks -- 3.5.1.6 Network self-organization -- 3.5.1.7 IPv6, IoT and Scalability -- 3.5.1.8 Green networking technology -- 3.6 Processes -- 3.6.1 Adaptive and Event-Driven Processes -- 3.6.2 Processes Dealing with Unreliable Data -- 3.6.3 Processes dealing with unreliable resources -- 3.6.4 Highly Distributed Processes -- 3.7 Data Management -- 3.7.1 Data Collection and Analysis (DCA) -- 3.7.2 Big Data -- 3.7.3 Semantic Sensor Networks and Semantic Annotation of data -- 3.7.4 Virtual Sensors -- 3.8 Security, Privacy &Trust -- 3.8.1 Trust for IoT -- 3.8.2 Security for IoT -- 3.8.3 Privacy for IoT -- 3.9 Device Level Energy Issues -- 3.9.1 Low Power Communication -- 3.9.2 Energy Harvesting -- 3.9.3 Future Trends and Recommendations -- 3.10 IoT Related Standardization -- 3.10.1 The Role of Standardization Activities -- 3.10.2 Current Situation -- 3.10.3 Areas for Additional Consideration -- 3.10.4 Interoperability in the Internet-of-Things -- 3.10.4.1 IoT Interoperability necessary framework -- 3.10.4.2 Technical IoT Interoperability -- 3.11 IoT Protocols Convergence -- 3.11.1 Message Queue Telemetry Transport (MQTT) -- 3.11.2 Constrained Applications Protocol (CoAP) -- 3.11.3 Advanced Message Queuing Protocol (AMQP) -- 3.11.4 Java Message Service API (JMS) -- 3.11.5 Data Distribution Service (DDS) -- 3.11.6 Representational State Transfer (REST) -- 3.11.7 Extensible Messaging and Presence Protocol (XMPP) -- 3.12 Discussion -- Acknowledgments -- List of Contributors -- List of Abbreviations and Acronyms -- 4 Internet of Things Global Standardisation - State of Play -- 4.1 Introduction -- 4.1.1 General -- 4.2 IoT Vision -- 4.2.1 IoT Drivers -- 4.2.2 IoT Definition -- 4.3 IoT Standardisation Landscape -- 4.3.1 CEN/ISO and CENELEC/IEC -- 4.3.1.1 CEN/CENELEC overview.

4.3.1.2 CEN technical bodies -- 4.3.1.3 European standards -- 4.3.1.4 Technical specifications -- 4.3.1.6 CENELEC workshop agreements (CWA) -- 4.3.1.7 CEN members -- 4.3.1.8 CEN/TC 225 -- 4.3.1.9 CENELEC -- 4.3.1.10 Smart grids: EC Mandate M/490 -- 4.3.1.11 ISO/IEC JTC 1/SWG 05 on the Internet of Things (IoT) -- 4.3.1.12 ISO/IEC JTC 1/WG 7 Sensor Networks -- 4.3.1.13 ISO/IEC JTC 1/SC 31 Automatic identification and data capture techniques -- 4.3.2 ETSI -- 4.3.3 IEEE -- 4.3.3.1 Overview -- 4.3.3.2 Cloud Computing -- 4.3.3.3 eHealth -- 4.3.3.4 eLearning -- 4.3.3.5 Intelligent Transportation Systems (ITS) -- 4.3.3.6 Network and Information Security (NIS) -- 4.3.3.7 Smart Grid -- 4.3.4 IETF -- 4.3.5 ITU-T -- 4.3.6 OASIS -- 4.3.6.1 Transactional Reliability -- 4.3.6.2 Modularity, reusability, and devices in the cloud -- 4.3.6.3 All that big data from all those things: access control, cybersecurity and privacy -- 4.3.6.4 Access control -- 4.3.6.5 Encryption and cybersecurity -- 4.3.6.6 Privacy -- 4.3.7 OGC -- 4.3.8 oneM2M -- 4.3.9 GS1 -- 4.3.9.1 The Role of Standards -- 4.3.9.2 GS1 Standards: Identify, Capture, Share -- 4.3.9.3 Looking forward -- 4.4 IERC Research Projects Positions -- 4.4.1 BETaaS Advisory Board Experts Position -- 4.4.2 IoT6 Position -- 4.5 Conclusions -- References -- 5 Dynamic Context-Aware Scalable and Trust-based IoT Security, Privacy Framework -- 5.1 Introduction -- 5.2 BackgroundWork -- 5.3 Main Concepts and Motivation of the Framework -- 5.3.1 Identity Management -- 5.3.2 Size and Heterogeneity of the System -- 5.3.3 Anonymization of User Data and Metadata -- 5.3.4 Action's Control -- 5.3.5 Privacy by Design -- 5.3.6 Context Awareness -- 5.3.7 Summary -- 5.4 A Policy-based Framework for Security and Privacy in Internet of Things -- 5.4.1 Deployment in a Scenario -- 5.4.2 Policies and Context Switching.

5.4.3 Framework Architecture and Enforcement -- 5.5 Conclusion and Future Developments -- 5.6 Acknowledgments -- References -- 6 Scalable Integration Framework for Heterogeneous Smart Objects, Applications and Services -- 6.1 Introduction -- 6.2 IPv6 Potential -- 6.3 IoT6 -- 6.4 IPv6 for IoT -- 6.5 Adapting IPv6 to IoT Requirements -- 6.6 IoT6 Architecture -- 6.7 DigCovery -- 6.8 IoT6 Integration with the Cloud and EPICS -- 6.9 Enabling Heterogeneous Integration -- 6.10 IoT6 Smart Office Use-case -- 6.11 Scalability Perspective -- 6.12 Conclusions -- References -- 7 Internet of Things Applications - From Research and Innovation to Market Deployment -- 7.1 Introduction -- 7.2 OpenIoT -- 7.2.1 Project Design and Implementation -- 7.2.2 Execution and Implementation Issues -- 7.2.3 Project Results -- 7.2.4 Acceptance and Sustainability -- 7.2.5 Discussion -- 7.3 iCORE -- 7.3.1 Design -- 7.3.1.1 Smart home and assisted living -- 7.3.1.2 Smart business and logistics -- 7.3.1.3 Smart-city - transportation -- 7.3.1.4 Smart meeting -- 7.3.1.5 Rationale for chosen use cases -- 7.3.2 Project Execution -- 7.3.3 Results Achieved -- 7.3.3.1 Smart tourism trial -- 7.3.3.2 Smart urban security trial -- 7.3.3.3 Smart asset management trial -- 7.3.3.4 Smart amusement park trial -- 7.4 COMPOSE -- 7.4.1 Project Design and Implementation -- 7.4.2 The IoT Communication Technologies -- 7.4.3.1 The COMPOSE services -- 7.4.3.2 The back-end technologies -- 7.4.3 Execution and Implementation Issues -- 7.4.4 Expected Project results -- 7.4.4.1 Smart Spaces -- 7.4.4.2 Smart City -- 7.4.4.3 Smart territory -- 7.5 SmartSantander -- 7.5.1 How SmartSantander Facility has Become a Reality? -- 7.5.2 Massive Experimentation Facility: A Fire Perspective -- 7.5.3 City Services Implementation:The Smart City Paradigm -- 7.5.3.1 Parking service management.

7.5.3.2 Traffic intensity monitoring -- 7.5.3.3 Environmental monitoring -- 7.5.3.4 Parks and gardens irrigation -- 7.5.3.5 Citizens apps -- 7.5.4 Sustainability Plan -- 7.6 FITMAN -- 7.6.1 The "IoT for Manufacturing"Trials in FITMAN -- 7.6.2 FITMAN Trials' Requirements to "IoT for Manufacturing" -- 7.6.3 The TRW and Whirlpool Smart Factory Trial -- 7.6.4 FITMAN Trials' Exploitation Plans & Business Opportunities -- 7.6.5 Conclusions and Future Outlook -- 7.7 OSMOSE -- 7.7.1 The AW and EPC "IoT for Manufacturing"Test Cases -- 7.7.2 OSMOSE Use Cases' Requirements to "IoT for Manufacturing" -- 7.7.3 OSMOSE Use Cases' Exploitation Plans & Business Opportunities -- 7.7.4 Conclusions and Future Outlook -- Acknowledgments -- List of Contributors -- Contributing Projects and Initiatives -- References -- 8 Bringing IP to Low-power Smart Objects: The Smart Parking Case in the CALIPSO Project -- Abstract -- 8.1 Introduction -- 8.1.1 Bringing IP to Energy-Constrained Devices -- 8.1.2 The CALIPSO Project -- 8.2 Smart Parking -- 8.3 CALIPSO Architecture -- 8.3.1 CALIPSO Communication Modules -- 8.3.1.1 MAC layer -- 8.3.1.2 Routing layer -- 8.3.1.3 Application layer -- 8.3.2 CALIPSO Security Modules -- 8.4 Calipso Implementation and Experimentation with Smart Parking -- 8.4.1 Implementation of Calipso Modules -- 8.4.2 Experimentation Plan for Smart Parking -- 8.4.2.1 Prototype description -- 8.4.2.2 Description of the scenario -- 8.4.2.3 Performance indicators -- 8.5 Concluding Remarks -- Acknowledgements -- References -- 9 Insights on Federated Cloud Service Management and the Internet of Things -- Abstract -- 9.1 Introduction -- 9.2 Federated Cloud Services Management -- 9.2.1 Cloud Data Management -- 9.2.2 Cloud Data Monitoring -- 9.2.3 Cloud Data Exchange -- 9.2.4 Infrastructure Configuration and re-Configuration -- 9.3 Federated Management Service Life Cycle.

9.3.1 Open IoT Autonomic Data Management.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: