Cover image for An Introduction to Synchrotron Radiation : Techniques and Applications.
An Introduction to Synchrotron Radiation : Techniques and Applications.
Title:
An Introduction to Synchrotron Radiation : Techniques and Applications.
Author:
Willmott, Philip.
ISBN:
9781119972860
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (370 pages)
Contents:
An Introduction to Synchrotron Radiation -- Contents -- Preface -- Acknowledgements -- 1. Introduction -- 1.1 A Potted History of X-rays -- 1.2 Synchrotron Sources Over the Last 50 Years -- References -- 2. The Interaction of X-rays with Matter -- 2.1 Introduction -- 2.2 The Electromagnetic Spectrum -- 2.3 Thomson Scattering -- 2.4 Compton Scattering -- 2.5 Atomic Scattering Factors -- 2.5.1 Scattering From a Cloud of Free Electrons -- 2.5.2 Correction Terms for the Atomic Scattering Factor -- 2.6 The Refractive Index, Reflection and Absorption -- 2.6.1 The Refractive Index -- 2.6.2 Refraction and Reflection -- 2.6.3 Absorption -- 2.7 X-ray Fluorescence and Auger Emission -- 2.7.1 X-ray Fluorescence -- 2.7.2 Auger Emission -- 2.7.3 Fluorescence or Auger? -- 2.8 Concluding Remarks -- References -- 3. Synchrotron Physics -- 3.1 Introduction -- 3.2 Overview -- 3.3 Radiation From Relativistic Electrons -- 3.3.1 Magnetic Deflection Fields -- 3.3.2 Radiated Power Loss in Synchrotrons -- 3.4 Radio Frequency Power Supply and Bunching -- 3.5 Photon Beam Properties -- 3.5.1 Flux and Brilliance -- 3.5.2 Emittance -- 3.5.3 Coherence -- 3.5.4 Polarization of Synchrotron Radiation -- 3.6 Bending Magnets and Superbends -- 3.7 Insertion Devices -- 3.7.1 Wigglers -- 3.7.2 Worked Example: The SLS Materials Science Beamline Wiggler -- 3.7.3 Undulators -- 3.8 Future Sources of Synchrotron Light -- 3.8.1 The Energy Recovery Linac -- 3.8.2 The Free-Electron Laser -- 3.8.3 Tabletop Synchrotrons -- 3.9 Concluding Remarks -- References -- 4. Beamlines -- 4.1 Introduction -- 4.2 Front End -- 4.2.1 Beam-Position Monitors -- 4.2.2 Primary Aperture and Front-End Slits -- 4.2.3 Low-Energy Filters -- 4.3 Primary Optics -- 4.3.1 X-ray Mirrors -- 4.3.2 Mirror Focal Lengths - The Coddington Equations -- 4.3.3 Monochromators -- 4.3.4 Focusing Geometry.

4.4 Microfocus and Nanofocus Optics -- 4.4.1 Lens Types -- 4.5 Beam Intensity Monitors -- 4.6 Detectors -- 4.6.1 Photographic Plates -- 4.6.2 Scintillator Detectors -- 4.6.3 The Point-Spread Function -- 4.6.4 Crystal Analysers -- 4.6.5 Image Plates and Charge-Coupled Devices -- 4.6.6 Pixel and Microstrip Detectors -- 4.6.7 Energy-Dispersive Detectors -- 4.7 Time-Resolved Experiments -- 4.7.1 Avalanche Photodiodes -- 4.7.2 Streak Cameras -- 4.8 Concluding Remarks -- References -- 5. Scattering Techniques -- 5.1 Introduction -- 5.2 Diffraction at Synchrotron Sources -- 5.3 Description of Crystals -- 5.3.1 Lattices and Bases -- 5.3.2 Crystal Planes -- 5.3.3 Labelling Crystallographic Planes and Axes -- 5.4 Basic Tenets of X-ray Diffraction -- 5.4.1 Introduction -- 5.4.2 The Bragg Law and the Reciprocal Lattice -- 5.4.3 The Influence of the Basis -- 5.4.4 Kinematical and Dynamical Diffraction -- 5.5 Diffraction and the Convolution Theorem -- 5.5.1 The Convolution Theorem -- 5.5.2 Understanding the Structure Factor -- 5.6 The Phase Problem and Anomalous Diffraction -- 5.6.1 Introduction -- 5.6.2 The Patterson Map -- 5.6.3 Friedel's Law and Bijvoet Mates -- 5.6.4 Anomalous Diffraction -- 5.6.5 Direct Methods -- 5.7 Types of Crystalline Samples -- 5.8 Single Crystal Diffraction -- 5.8.1 Laue Diffraction -- 5.8.2 Single Crystal Diffraction With Monochromatic X-rays -- 5.9 Textured Samples -- 5.9.1 Worked Example - Microdiffraction of Ancient Textiles -- 5.10 Powder Diffraction -- 5.10.1 Introduction -- 5.10.2 Basics of Powder Diffraction -- 5.10.3 Worked Example - Structural Solutions Made Easy -- 5.10.4 The Pair-Distribution Function -- 5.11 Protein Crystallography -- 5.11.1 Introduction -- 5.11.2 Geometry and Resolution -- 5.11.3 Solving the Phase Problem in PX -- 5.11.4 Worked Example - Cracking the Rabies Virus Protection Shield.

5.11.5 Protein Powder Diffraction -- 5.11.6 Time-Resolved Studies -- 5.12 Ultrafast Diffraction Using Femtoslicing -- 5.13 Surface Diffraction -- 5.13.1 Introduction -- 5.13.2 Crystal Truncation Rods -- 5.13.3 Superstructure Rods -- 5.13.4 Data Acquisition -- 5.13.5 Worked Example - The Surface of Strontium Titanate -- 5.14 Resonant X-ray Diffraction -- 5.15 X-ray Reflectometry -- 5.15.1 Introduction -- 5.15.2 Reflection of X-rays and the Fresnel Equations -- 5.15.3 Thin Films and Multilayers -- 5.15.4 Worked Example - Monitoring Monolayer-for-Monolayer Thin Film Growth -- 5.16 Small-Angle X-ray Scattering -- 5.16.1 Introduction -- 5.16.2 Theory -- 5.16.3 Practical Considerations -- 5.16.4 Worked Example - The Shape of Memory -- 5.16.5 Grazing-Incidence SAXS -- 5.17 Concluding Remarks -- References -- 6. Spectroscopic Techniques -- 6.1 Introduction -- 6.2 X-ray Absorption Processes -- 6.2.1 Energy Level Schemes of Atoms, Molecules and Solids -- 6.2.2 Absorption Features -- 6.3 Photoelectron Energies, Wavelengths and Absorption Regions -- 6.4 X-ray Absorption Near-Edge Structure, XANES -- 6.4.1 Introduction -- 6.4.2 The XANES Signal -- 6.4.3 Worked Example - Preservation of the Seventeenth-Century Warship Vasa -- 6.5 Extended X-ray Absorption Fine Structure, EXAFS -- 6.5.1 Introduction -- 6.5.2 The EXAFS Signal -- 6.5.3 Worked Example - Resistance of Lichens to Metallic Pollution -- 6.5.4 Time-Resolved Absorption Spectroscopy -- 6.6 Fluorescence Spectroscopies -- 6.6.1 Introduction -- 6.6.2 X-ray Fluorescence -- 6.6.3 Resonant Inelastic X-ray Scattering -- 6.6.4 X-ray Standing Waves -- 6.7 Scanning Transmission X-ray Microscopy, STXM -- 6.7.1 Introduction -- 6.7.2 The Water Window -- 6.7.3 Modes in STXM -- 6.7.4 Worked Example - Extraterrestrial Origins of Life -- 6.8 Photoemission Electron Microscopy -- 6.8.1 Basics of PEEM.

6.8.2 Worked Example - The Sea Urchin's Tooth -- 6.8.3 PEEM and Magnetic Dichroism -- 6.9 Photoemission Spectroscopy -- 6.9.1 Introduction -- 6.9.2 Ultraviolet Photoemission Spectroscopy -- 6.9.3 X-ray Photoelectron Spectroscopy -- 6.10 Concluding Remarks -- References -- 7. Imaging Techniques -- 7.1 Introduction -- 7.2 Computed Microtomography -- 7.2.1 Introduction -- 7.2.2 General Concepts -- 7.2.3 Practical Considerations -- 7.2.4 Phase-Contrast Tomography -- 7.2.5 Soft X-ray Tomography -- 7.2.6 Worked Example - The Spread of Hominoids -- 7.3 Lensless Imaging -- 7.3.1 Introduction -- 7.3.2 Speckle -- 7.3.3 Noncrystalline and Crystalline Samples -- 7.3.4 Ptychography -- 7.3.5 X-ray Photon Correlation Spectroscopy -- 7.4 Concluding Remarks -- References -- Appendix: Physical Constants Relevant to Synchrotron Radiation -- Index.
Abstract:
This book introduces the reader to the basic concepts of the generation and manipulation of synchrotron light, its interaction with matter, and the application of synchrotron light in the "classical" techniques, while including some of the most modern technological developments. As much as possible, complicated mathematical derivations and formulas are avoided. A more heuristic approach is adopted, whereby the general physical reasoning behind the equations is highlighted. Key features: A general introduction to synchrotron radiation and experimental techniques using synchrotron radiation Contains many detailed "worked examples" from the literature Of interest for a broad audience - synchrotrons are possibly one of the best examples of multidisciplinary research Four-colour presentation throughout.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: