Cover image for Micro and Nano Manipulations for Biomedical Applications.
Micro and Nano Manipulations for Biomedical Applications.
Title:
Micro and Nano Manipulations for Biomedical Applications.
Author:
Yih, Tachung C.
ISBN:
9781596932555
Personal Author:
Physical Description:
1 online resource (311 pages)
Contents:
Micro and Nano Manipulations for Biomedical Applications -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 The Third Industrial Revolution? -- 1.1.1 The First Industrial Revolution-Manufacturing and Transportation -- 1.1.2 The Second Industrial Revolution-Computer and Communication -- 1.1.3 The Third Industrial Revolution-Health and Environment? -- 1.2 Microtechnologies and Nanotechnologies -- 1.2.1 Challenges and Opportunities in Nanotechnology -- 1.2.2 Micromanipulations and Nanomanipulations -- 1.3 Applications and Trends -- 1.3.1 Biomedical Science and Engineering -- 1.3.2 Health Care and Environmental Applications -- References -- Chapter 2 Nanotechnology Applications in Cancer Imaging and Therapy -- 2.1 Introduction -- 2.2 Nanotechnology Approaches for In Vivo Diagnostics -- 2.2.1 Molecular Imaging Approaches for In Vivo Diagnostics -- 2.2.2 Nanotechnology-Based Contrast Agents for In Vivo Imaging -- 2.3 Nanotechnology-Based Drug Delivery Systems for Cancer Therapy -- 2.3.1 Fundamental Requirements for Drug Delivery Systems -- 2.3.2 Cancer Therapy Approaches Using Nanotechnologies -- 2.4 Conclusions -- References -- Chapter 3 Nanoparticles for Biomedical Applications -- 3.1 Introduction -- 3.2 Synthesis of Metallic Nanoparticles -- 3.2.1 Synthesis Approaches to Noble Metal Nanoparticles -- 3.2.1.1 Introduction -- 3.2.1.2 Synthesis of Gold Nanoparticles -- 3.2.2 Synthesis of Magnetic Metal Nanoparticles -- 3.3 Novel Properties of Metal Nanoparticles -- 3.3.1 Unique Properties of Noble Metal Nanoparticles -- 3.3.2 Magnetic Properties of Metallic Nanoparticles -- 3.4 Application of Metal Nanoparticles in Biomedicine -- 3.4.1 Biomedical Detection Using Novel Metal Nanoparticles -- 3.4.1.1 Au Nanoparticles -- 3.4.1.2 Ag Nanoparticles -- 3.4.2 Drug Delivery and Biosensing with Magnetic Nanoparticles.

3.5 Specific Properties of Quantum Dots -- 3.6 Quantum Dots as Fluorescent Biological Labels -- 3.6.1 Disadvantages of Organic Dyes, Traditional Biological Labels -- 3.6.2 Beneficial Quantum Dot Optical and Spectral Properties -- 3.7 Quantum Dots in Biomedical Applications -- References -- Chapter 4 Microactuators for In Vivo Imaging and Micromanipulators in Minimally Invasive Procedures -- 4.1 Minimally Invasive Procedure Applications -- 4.2 Endoscopic and In Vivo Imaging Applications -- 4.2.1 In Vivo Scanning Microscope -- 4.2.2 In Vivo Optical Coherent Tomography Imaging -- 4.3 Micromanipulators for Minimally Invasive Procedures -- 4.3.1 Microtools -- 4.3.2 Sensors in Micromanipulators -- 4.3.3 Navigation -- 4.5 Conclusions -- References -- Chapter 5 Microactuators -- 5.1 Introduction -- 5.2 Electrostatic Actuators -- 5.3 Thermal Actuators -- 5.4 Piezoelectric Actuators -- 5.5 Shape Memory Alloy Actuators -- 5.6 Magnetic Actuators -- 5.7 Conclusions -- References -- Chapter 6 Optical Nanomanipulation in a Living Cell -- 6.1 Two-Photon Fluorescence Microscopy -- 6.1.1 Introduction -- 6.1.2 A Brief Analytical Description -- 6.2 Second-Harmonic-Generation Micro -- 6.2.1 Introduction -- 6.2.2 Nonlinear Optical Processes -- 6.2.3 Single-Molecule Cross Section -- 6.2.4 Biological Membrane Imaging -- 6.3 Laser-Induced Microdissection -- 6.3.1 Summary -- 6.3.2 Introduction to Optical Dissection -- 6.3.3 Three-Dimensional Imaging and Optical Dissection by Nonlinear Optical Microscopy -- 6.3.4 Physical Characterization of Nanosurgery -- 6.3.5 Mitotic Spindle Positioning -- 6.3.6 Mitotic Spindle Elongation -- 6.4 Optical Trapping -- 6.4.1 Summary -- 6.4.2 Introduction to Optical Tweezers -- 6.4.3 Optical Trapping Inside Yeast Cells -- 6.4.4 Laser-Induced Nucleus Displacement.

6.4.5 Motion of a Displaced Interphase Nucleus Back to the Cell Center by Microtubule Pushing -- 6.4.6 Asymmetric Cell Division as a Result of Nucleus Displacement DuringInterphase -- 6.4.7 Division Plane Determination in Early Prophase -- 6.5 Optical Knockout -- 6.5.1 Introduction -- 6.5.2 One-Photon CALI -- 6.5.3 Micro-CALI -- 6.5.4 Multiphoton CALI -- 6.6 Conclusions -- Acknowledgments -- References -- Chapter 7 Dielectrophoretic Methods forBiomedical Applications -- 7.1 Introduction -- 7.2 Theory -- 7.2.1 Dielectrophoresis -- 7.2.2 Dielectric Properties of Bioparticles and Biomolecules -- 7.3 Dielectrophoretic Approaches to Bioparticle Manipulation and Characterization -- 7.3.1 Differential Manipulation of Bioparticles -- 7.3.2 Filtration and Concentration of Bioparticles -- 7.3.3 Manipulating Cells for Subsequent Analysis -- 7.3.4 Cell Patterning and Tissue Engineering -- 7.3.5 Characterizing Cell Physiology by Dielectrophoresis -- 7.4 Dielectrophoretic Approaches to Molecular Assays -- 7.4.1 Microparticle-Based Systems -- 7.4.2 Droplet-Based Systems: Digital Microfluidics -- 7.5 Conclusions and Perspectives -- Acknowledgments -- References -- Chapter 8 Design, Analysis, Modeling, Simulation,and Control of Microscale and Nanoscale Cell Manipulations -- 8.1 Introduction -- 8.1.1 Overview of Micropositioning and Nanopositioning Systems Based on Piezoactuators -- 8.1.2 Applications of Piezoactuated Micropositioning and Nanopositioning Systems -- 8.2 Construction of the Micro-Nano Robot as a Mechatronic System -- 8.2.1 Conceptual Design of Piezo-Actuated Microrobot Development -- 8.2.2 Robot RoTeMiNa for Cell Micromanipulation and Nanomanipulation -- 8.2.3 Design of the Micro Stage Robot -- 8.2.4 Design of the Nano Stage Robot -- 8.2.5 Teleoperated Control.

8.3 Differential Kinematics of a Hybrid Robot for Cell Micromanipulations and Nanomanipulations -- 8.3.1 Link and Joint Numbering -- 8.3.2 Oriented Graph Attached to the Mechanism -- 8.3.3 Matrix Description of Graph -- 8.3.3.1 Incidence Links-Joints Matrix G -- 8.3.3.2 Incidence Cycles-Joints Matrix C -- 8.3.4 Geometric Jacobean -- 8.3.4.1 Frame Position and Orientation -- 8.3.4.2 Joint Screws -- 8.3.4.3 Numerical Example -- 8.3.4.4 Row Reduced Form and the Rank of Jacobean -- 8.3.4.5 Number of Jacobean Columns -- 8.3.5 Degrees of Freedom -- 8.3.6 Independent Equations for the Inverse Kinematics -- 8.4 Hardware and Software for the Development of Micropositioning and Nanopositioning Systems -- 8.4.1 Guidelines for Development -- 8.4.2 Sensors for Feedback -- 8.4.3 Unified Approach for Functional Task Formulation -- 8.5 Intelligent Control of Piezoactuated Robot Using an Approximated Hysteresis Model in Micromanipulations and Nanomanipulations -- 8.5.1 Introduction -- 8.5.2 The Mathematical Model of Hysteresis -- 8.5.2.1 Preprocessing Data -- 8.2.5.2 The Mathematical Model -- 8.5.3 The Neuro-Fuzzy Inverse Model -- 8.5.4 The Control System Structure -- 8.5.5 Multiobjective Optimal PI/PID Controller Design Using Genetic Algorithms -- 8.6 Experimental Results -- 8.7 Extension of the Method and Limitations -- 8.8 Discussion and Conclusions -- Acknowledgments -- References -- Chapter 9 Dynamics Modeling and Analysis for Gene Manipulations -- 9.1 Introduction -- 9.1.1 Current Status -- 9.1.2 Requirements for Gene Delivery -- 9.1.3 Methods for Gene Delivery -- 9.1.3.1 Viral Vector Method -- 9.1.3.2 Nonviral Methods -- 9.2 Electroporation -- 9.2.1 Electrode -- 9.2.2 Electric Pulse -- 9.2.3 Tissue Damage -- 9.2.4 Gene Expression Efficiency -- 9.2.5 Dynamics Modeling -- 9.3 Hydroporation -- 9.4 Sonoporation -- 9.4.1 Impact of Ultrasound Frequency.

9.4.2 Impact of Ultrasound Intensity -- 9.4.3 Impact of Ultrasound Exposure Time -- 9.4.4 Cell Damage with Sonoporation -- 9.4.5 Dynamic Modeling -- 9.5 Microneedle and Microinjection -- 9.5.1 Microneedle -- 9.5.2 Microinjection -- 9.6 Optoinjection and Optoporation -- 9.7 Magnetofection -- 9.8 Gene Gun -- 9.8.1 Introduction -- 9.8.1.1 Bench-Top Gene Gun -- 9.8.1.2 Handheld Gene Gun -- 9.8.2 Dynamic Modeling -- 9.9 Summary and Comparison of the Physical Methods -- 9.10 Summary and Future Challenges -- References -- About the Authors -- Index.
Abstract:
Taking bio-device research and development to "the next level," this book covers the latest advances in biomedical microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS). The book presents new developments in the synthesis and use of metallic nanoparticles in bio-sensing and drug delivery, including quantum dots semiconductors nanocrystals.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: