Cover image for Nano-Optics and Near-Field Optical Microscopy.
Nano-Optics and Near-Field Optical Microscopy.
Title:
Nano-Optics and Near-Field Optical Microscopy.
Author:
Zayats, Anatoly.
ISBN:
9781596932845
Personal Author:
Physical Description:
1 online resource (378 pages)
Contents:
Nano-Optics and Near-Field Optical Microscopy -- Contents -- Preface -- Part I: Nano-Optics and Near-Field Microscopy -- Chapter 1: Optics at the Nanometer Scale -- 1.1 The Age of Nanometer Science and Technology -- 1.2 The Role of Optics -- 1.2.1 Unsurpassed Chemical Specificity -- 1.2.2 Limitations -- 1.2.3 Topics in Near-Field Optics -- 1.3 Near-Field Optical Microscopy -- 1.3.1 Standard Design -- 1.3.2 NOM Probes -- 1.3.3 Image Formation -- 1.3.4 Modes of Operation -- 1.3.5 Image Interpretation/Computational Methods -- 1.3.6 Applications -- 1.4 Historical Background -- 1.4.1 NFO Before the Dawn of Nanometer Science and Technology -- 1.4.2 Antennas in Front of an Interface Between Two Media -- 1.4.3 Molecule in Front of Another Medium -- 1.4.4 Fluorescence Resonant Energy Transfer (FRET) -- 1.4.5 Rayleigh and Mie Scattering of Light -- 1.4.6 Surface-Enhanced Raman Scattering (SERS) -- 1.4.7 Transmission of Small Apertures -- 1.4.8 Early Proposals for Super-Resolution Optical Microscopy -- 1.5 The "Age" of Nano-Optics -- 1.5.1 Start-up Phase (1984-1994) -- 1.5.2 Consolidation and Generalization -- 1.5.3 Outlook -- References -- Chapter 2: Near-Field Photonic Forces -- 2.1 Introduction -- 2.2 Basic Theory of Forces Due to Electromagnetic Fields -- 2.2.1 Maxwell's Stress Tensor -- 2.3 The Dipole Approximation -- 2.4 Force on a Dipolar Particle Due to an Evanescent Wave -- 2.5 Force on Particles upon Surfaces -- 2.5.1 Dipolar Particles -- 2.5.2 Particles with Sizes on the Order of the Wavelength -- 2.6 Forces and Surface Topography: Nanoparticle Resonances -- 2.7 Optical Binding -- 2.8 Optical Tweezers: Nanomanipulation with an Apertureless Probe -- 2.8.1 Manipulation of Lossless Particles -- 2.8.2 Manipulation of Dielectric and Absorbing Particles -- 2.8.3 Manipulation of Metallic Particles -- 2.9 Nanomanipulation with a Photonic Crystal.

2.10 Conclusion -- References -- Chapter 3: Nano-Optics with Single Quantum Systems -- 3.1 Introduction -- 3.2 Interaction of Light with Single Two-Level Quantum Systems -- 3.3 Fluorescent Molecules at Ambient Conditions as Local Field Probes -- 3.4 Mapping the Field Distribution in a Focused Laser Beam -- 3.5 Mapping the Field Distribution at a Sharp Tip -- 3.6 Energy Transfer and Quenching -- 3.7 Conclusion -- Acknowledgments -- References -- Chapter 4: Near-Field Second-Harmonic Generation -- 4.1 Introduction -- 4.2 Near-Field Microscopy of SHG -- 4.2.1 Aperture-Based SHG SNOM -- 4.2.2 Apertureless SHG SNOM -- 4.3 Near-Field SHG at Metal Surfaces -- 4.3.1 SHG Enhancement at Individual Surface Defects -- 4.3.2 SHG and Surface Polariton Localization on a Rough Surface -- 4.4 Apertureless Second-Harmonic SNOM -- 4.4.1 SHG in the Presence of a Probe Tip -- 4.4.2 Self-Consistent SHG ASNOM Model -- 4.4.3 Experimental Realization of SHG ASNOM -- 4.5 Near-Field SHG Imaging of Functional Materials -- 4.5.1 SHG Imaging of Magnetic Domains -- 4.5.2 Local Poling Analysis of Ferroelectric Materials -- 4.6 Conclusion -- Acknowledgments -- References -- Chapter 5: Near-Field Microscopy and Lithography of Light-Emitting Polymers -- 5.1 Introduction -- 5.2 Conjugated Polymer Blends -- 5.3 Aperture SNOM -- 5.3.1 Application to Conjugated Polymers -- 5.3.2 Implementation -- 5.3.3 The Nature of the Near-Field Illumination -- 5.4 CW and Time-Resolved Fluorescence SNOM of Polymer Blends -- 5.4.1 An Energy-Transfer Blend for Light Emitting Applications -- 5.4.2 A Charge-Transfer Blend for Photocells -- 5.5 Photoconductivity SNOM -- 5.6 Near-Field Photolithography -- 5.7 Conclusions and Future Developments -- Acknowledgments -- References -- Part II: Nanophotonics -- Chapter 6: Near-Field Characterization of PlanarPhotonic-Crystal-Waveguide Structures -- 6.1 Introduction.

6.2 Sample Fabrication and SNOM Experimental Setup -- 6.3 Near-Field Imaging of PhCWs: Qualitative Considerations -- 6.4 Near-Field Characterization of PhCW Components -- 6.4.1 PhCW Propagation Loss -- 6.4.2 PhCW Mode Dispersion -- 6.4.3 Loss in Gradual PhCW Bends -- 6.4.4 Loss in Double 60° PhCW Bends -- 6.4.5 Directional Couplers (Sample N5) -- 6.5 Conclusions -- Acknowledgments -- References -- Chapter 7: Tracking Light Pulses with Near-Field Microscopy -- 7.1 Introduction -- 7.2 Heterodyne Interferometry -- 7.2.1 Mach-Zehnder Interferometer -- 7.2.2 Lock-in Detection -- 7.2.3 Light Source Requirements -- 7.3 Application in Near-Field Microscopy -- 7.3.1 Setup Considerations -- 7.3.2 Pulse Tracking in a Waveguide -- 7.3.3 Determination of the Phase Velocity -- 7.3.4 Determination of the Group Velocity -- 7.4 Pulse Tracking in Dispersive Media -- 7.4.1 The Influence of Group Velocity Dispersion -- 7.4.2 The Influence of Higher-Order Dispersion -- 7.4.3 Slow-Pulse Propagation with Low Dispersion -- 7.5 Conclusions -- Acknowledgments -- References -- Part III: Plasmonics -- Chapter 8: Near-Field Optical Characterization of Plasmonic Materials -- 8.1 Scanning Near-Field Optical Microscopy of Plasmonic Structures -- 8.1.1 Visualizing Surface Plasmon Polaritons on Metal Structures -- 8.1.2 Monitoring Effects of Localized Surface Plasmons on Metal Nanoparticles -- 8.2 Surface Plasmon Polaritons on Metal Films of Nanohole Arrays -- 8.2.1 Introduction -- 8.2.2 Fabrication of Microscale Arrays of Nanoholes -- 8.2.3 Illumination-Mode SNOM of Nanohole Arrays -- 8.2.4 Collection Mode SNOM of Nanohole Arrays -- 8.2.5 Near-Field and Far-Field Characterization of Anisotropic Nanohole Arrays -- 8.3 Future Directions and Outlook -- Acknowledgments -- References -- Chapter 9: High Enhancement and Near-Field Localization of Light on Semicontinuous Films.

9.1 Introduction -- 9.2 Enhancement of the Electromagnetic Field on Metal Film -- 9.2.1 Surface Plasmon Resonances -- 9.3 Localization of Light on Semicontinuous Films -- 9.3.1 Coupling Between Localized and Propagative Surface Plasmon Modeson Semicontinuous Metallic Films -- 9.3.2 Nano-Optical Experiments on Semicontinuous Films -- 9.3.3 Fluorescence Enhancements and Nonlinear Effects -- 9.4 Conclusion -- Acknowledgments -- References -- Chapter 10: Nano-Optics with Hybrid Plasmonic Nanoparticles -- 10.1 Introduction -- 10.1.1 Hybrid Plasmonic Nanoparticles -- 10.1.2 Scope of the Review -- 10.2 Materials -- 10.2.1 Colloidal Synthesis and J-Aggregate Deposition -- 10.2.2 Electrostatic Layer-by-Layer Deposition -- 10.2.3 AAO Templating -- 10.3 Strong Coupling and Modulated Ground States -- 10.3.1 Theoretical Background -- 10.3.2 Coherent Coupling Between a Dipolar Plasmon and a MolecularExciton -- 10.3.3 Coherent Coupling Between a Delocalized Plasmon and a Molecular Exciton -- 10.3.4 Ultrafast Dynamics of Mixed States -- 10.4 Ultrafast Control of Molecular Energy Redistribution Using Hybrid Plasmon-Exciton States -- 10.5 Near-Field Optical Response of Plasmon-Exciton Hybrid Nanoparticles -- 10.6 Conclusions -- Acknowledgments -- References -- Part IV: Apertureless Near-Field Optical Microscopy -- Chapter 11: Near-Field Nanoscopy by Elastic Light Scattering from a Tip -- 11.1 Introduction -- 11.2 Principle of Scattering-Type Scanning Near-Field Optical Microscopy (s-SNOM) -- 11.3 Theory of Scattering-Type Scanning Near-Field Optical Microscopy -- 11.4 Elimination of Background-Scattering Contributions from the Detector Signal -- 11.5 Experimental Realization of s-SNOM -- 11.6 Contrast and Resolution in s-SNOM Images -- 11.7 Molecular Vibrational Near-Field Contrast -- 11.8 Tip-Induced Polariton Resonance.

11.9 Nanoscale Coherent Imaging of Optical Eigenfield Patterns -- 11.10 Applications of s-SNOM -- 11.11 Outlook -- Acknowledgments -- References -- Chapter 12: Single-Molecule Contrast inTip-Enhanced Fluorescence Microscopy -- 12.1 Introduction -- 12.2 Contrast in Tip-Enhanced Fluorescence Microscopy -- 12.3 Contrast with Fluorescence Modulation -- 12.4 Improving Contrast via Demodulation -- 12.5 Optimizing Tip Oscillation Amplitude -- 12.6 TEFM Imaging of Single Molecules and DNA -- 12.7 Conclusions -- References -- Chapter 13: Tip-Enhanced Optical Microscopy -- 13.1 Introduction -- 13.2 Field-Enhancement at a Metal Tip -- 13.3 Experimental Setup -- 13.4 Tip-Enhanced Raman Scattering -- 13.4.1 Introduction -- 13.4.2 Spatial Resolution, Field Localization, and Signal Enhancement -- 13.4.3 Mapping Molecular Junctions in Single-Walled Carbon Nanotubes -- 13.5 Tip-Enhanced Photoluminescence -- 13.5.1 Introduction -- 13.5.2 Near-Field Photoluminescence Imaging -- 13.6 Outlook -- Acknowledgments -- References -- Chapter 14: Near-Field Optical Molecular Structuring and Manipulation Based on the Use of Localized Surface Plasmons -- 14.1 Introduction -- 14.2 Tip-Enhanced Optical Lithography on Azobenzene-Containing Polymers -- 14.3 Mask-Based SPOL on Azobenezene-Containing Polymers -- 14.4 Near-Field Photopolymerization Based on Localized Surface Plasmons: Toward New Hybrid Particles for Nanophotonics -- 14.5 Conclusions and Future Routes -- References -- Chapter 15: Fluorescence Resonance Energy Transfer Scanning Near-Field Optical Microscopy -- 15.1 Fluorescence Resonance Energy Transfer -- 15.2 The Idea of FRET-Based Scanning Near-Field Optical Microscopy -- 15.3 Experimental Realizations of FRET SNOM -- 15.3.1 FRET-SNOM Imaging with Many FRET Pairs: Subtip Resolution -- 15.3.2 Single-Molecule FRET-SNOM Imaging -- 15.4 Concluding Remarks.

Acknowledgments.
Abstract:
This groundbreaking book focuses on near-field microscopy which has opened up optical processes at the nanoscale for direct inspection. Further, it explores the emerging area of nano-optics which promises to make possible optical microscopy with true nanometer resolution. This frontline resource helps you achieve high resolution optical imaging of biological species and functional materials. You also find guidance in the imaging of optical device operation and new nanophotonics functionalities.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: