Cover image for GaN Transistors for Efficient Power Conversion.
GaN Transistors for Efficient Power Conversion.
Title:
GaN Transistors for Efficient Power Conversion.
Author:
Lidow, Alex.
ISBN:
9781118844793
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (269 pages)
Contents:
GaN Transistors for Efficient Power Conversion -- Contents -- Foreword -- Acknowledgments -- 1 GaN Technology Overview -- 1.1 Silicon Power MOSFETs 1976-2010 -- 1.2 The GaN Journey Begins -- 1.3 Why Gallium Nitride? -- 1.3.1 Band Gap (Eg) -- 1.3.2 Critical Field (Ecrit) -- 1.3.3 On-Resistance (RDS(on)) -- 1.3.4 The Two-Dimensional Electron Gas -- 1.4 The Basic GaN Transistor Structure -- 1.4.1 Recessed Gate Enhancement-Mode Structure -- 1.4.2 Implanted Gate Enhancement-Mode Structure -- 1.4.3 pGaN Gate Enhancement-Mode Structure -- 1.4.4 Cascode Hybrid Enhancement-Mode Structure -- 1.4.5 Reverse Conduction in HEMT Transistors -- 1.5 Building a GaN Transistor -- 1.5.1 Substrate Material Selection -- 1.5.2 Growing the Heteroepitaxy -- 1.5.3 Processing the Wafer -- 1.5.4 Making Electrical Connection to the Outside World -- 1.6 Summary -- References -- 2 GaN Transistor Electrical Characteristics -- 2.1 Introduction -- 2.2 Key Device Parameters -- 2.2.1 Breakdown Voltage (BVDSS) and Leakage Current (IDSS) -- 2.2.2 On-Resistance (RDS(on)) -- 2.2.3 Threshold Voltage (VGS(th) or Vth) -- 2.3 Capacitance and Charge -- 2.4 Reverse Conduction -- 2.5 Thermal Resistance -- 2.6 Transient Thermal Impedance -- 2.7 Summary -- References -- 3 Driving GaN Transistors -- 3.1 Introduction -- 3.2 Gate Drive Voltage -- 3.3 Bootstrapping and Floating Supplies -- 3.4 dv/dt Immunity -- 3.5 di/dt Immunity -- 3.6 Ground Bounce -- 3.7 Common Mode Current -- 3.8 Gate Driver Edge Rate -- 3.9 Driving Cascode GaN Devices -- 3.10 Summary -- References -- 4 Layout Considerations for GaN Transistor Circuits -- 4.1 Introduction -- 4.2 Minimizing Parasitic Inductance -- 4.3 Conventional Power Loop Designs -- 4.4 Optimizing the Power Loop -- 4.5 Paralleling GaN Transistors -- 4.5.1 Paralleling GaN Transistors for a Single Switch.

4.5.2 Paralleling GaN Transistors for Half-Bridge Applications -- 4.6 Summary -- References -- 5 Modeling and Measurement of GaN Transistors -- 5.1 Introduction -- 5.2 Electrical Modeling -- 5.2.1 Basic Modeling -- 5.2.2 Limitations of Basic Modeling -- 5.2.3 Limitations of Circuit Modeling -- 5.3 Thermal Modeling -- 5.3.1 Improving Thermal Performance -- 5.3.2 Modeling of Multiple Die -- 5.3.3 Modeling of Complex Systems -- 5.4 Measuring GaN Transistor Performance -- 5.4.1 Voltage Measurement Requirements -- 5.4.2 Current Measurement Requirement -- 5.5 Summary -- References -- 6 Hard-Switching Topologies -- 6.1 Introduction -- 6.2 Hard-Switching Loss Analysis -- 6.2.1 Switching Losses -- 6.2.2 Output Capacitance (COSS) Losses -- 6.2.3 Gate Charge (QG) Losses -- 6.2.4 Reverse Conduction Losses (PSD) -- 6.2.5 Reverse Recovery (QRR) Losses -- 6.2.6 Total Hard-Switching Losses -- 6.2.7 Hard-Switching Figure of Merit -- 6.3 External Factors Impacting Hard-Switching Losses -- 6.3.1 Impact of Common-Source Inductance -- 6.3.2 Impact of High Frequency Power-Loop Inductance on Device Losses -- 6.4 Reducing Body Diode Conduction Losses in GaN Transistors -- 6.5 Frequency Impact on Magnetics -- 6.5.1 Transformers -- 6.5.2 Inductors -- 6.6 Buck Converter Example -- 6.6.1 Output Capacitance Losses -- 6.6.2 Gate Losses (PG) -- 6.6.3 Body Diode Conduction Losses (PSD) -- 6.6.4 Switching Losses (Psw) -- 6.6.5 Total Dynamic Losses (PDynamic) -- 6.6.6 Conduction Losses (PConduction) -- 6.6.7 Total Device Hard-Switching Losses (PHS) -- 6.6.8 Inductor Losses (PL) -- 6.6.9 Total Buck Converter Estimated Losses (PTotal) -- 6.6.10 Buck Converter Loss Analysis Accounting for Common Source Inductance -- 6.6.11 Experimental Results for the Buck Converter -- 6.7 Summary -- References -- 7 Resonant and Soft-Switching Converters -- 7.1 Introduction.

7.2 Resonant and Soft-Switching Techniques -- 7.2.1 Zero-Voltage and Zero-Current Switching -- 7.2.2 Resonant DC-DC Converters -- 7.2.3 Resonant Network Combinations -- 7.2.4 Resonant Network Operating Principles -- 7.2.5 Resonant Switching Cells -- 7.2.6 Soft-Switching DC-DC Converters -- 7.3 Key Device Parameters for Resonant and Soft-Switching Applications -- 7.3.1 Output Charge (QOSS) -- 7.3.2 Determining Output Charge from Manufacturers' Datasheet -- 7.3.3 Comparing Output Charge of GaN Transistors and Si MOSFETs -- 7.3.4 Gate Charge (QG) -- 7.3.5 Determining Gate Charge for Resonant and Soft-Switching Applications -- 7.3.6 Comparing Gate Charge of GaN Transistors and Si MOSFETs -- 7.3.7 Comparing Performance Metrics of GaN Transistors and Si MOSFETs -- 7.4 High-Frequency Resonant Bus Converter Example -- 7.4.1 Resonant GaN and Si Bus Converter Designs -- 7.4.2 GaN and Si Device Comparison -- 7.4.3 Zero-Voltage Switching Transition -- 7.4.4 Efficiency and Power Loss Comparison -- 7.5 Summary -- References -- 8 RF Performance -- 8.1 Introduction -- 8.2 Differences Between RF and Switching Transistors -- 8.3 RF Basics -- 8.4 RF Transistor Metrics -- 8.4.1 Determining the High-Frequency Characteristics of RF FETs -- 8.4.2 Pulse Testing for Thermal Considerations -- 8.4.3 Analyzing the S-Parameters -- 8.5 Amplifier Design Using Small-Signal S-Parameters -- 8.5.1 Conditionally Stable Bilateral Transistor Amplifier Design -- 8.6 Amplifier Design Example -- 8.6.1 Matching and Bias Tee Network Design -- 8.6.2 Experimental Verification -- 8.7 Summary -- References -- 9 GaN Transistors for Space Applications -- 9.1 Introduction -- 9.2 Failure Mechanisms -- 9.3 Standards for Radiation Exposure and Tolerance -- 9.4 Gamma Radiation Tolerance -- 9.5 Single-Event Effects (SEE) Testing.

9.6 Performance Comparison between GaN Transistors and Rad-Hard Si MOSFETs -- 9.7 Summary -- References -- 10 Application Examples -- 10.1 Introduction -- 10.2 Non-Isolated DC-DC Converters -- 10.2.1 12 VIN - 1.2 VOUT Buck Converter -- 10.2.2 28 VIN - 3.3 VOUT Point-of-Load Module -- 10.2.3 48 VIN - 12 VOUT Buck Converter with Parallel GaN Transistors for High-Current Applications -- 10.3 Isolated DC-DC Converters -- 10.3.1 Hard-Switching Intermediate Bus Converters -- 10.3.2 A 400 V LLC Resonant Converter -- 10.4 Class-D Audio -- 10.4.1 Total Harmonic Distortion (THD) -- 10.4.2 Damping Factor (DF) -- 10.4.3 Class-D Audio Amplifier Example -- 10.5 Envelope Tracking -- 10.5.1 High-Frequency GaN Transistors -- 10.5.2 Envelope Tracking Experimental Results -- 10.5.3 Gate Driver Limitations -- 10.6 Highly Resonant Wireless Energy Transfer -- 10.6.1 Design Considerations for Wireless Energy Transfer -- 10.6.2 Wireless Energy Transfer Examples -- 10.6.3 Summary of Design Considerations for Wireless Energy Transfer -- 10.7 LiDAR and Pulsed Laser Applications -- 10.8 Power Factor Correction (PFC) -- 10.9 Motor Drive and Photovoltaic Inverters -- 10.10 Summary -- References -- 11 Replacing Silicon Power MOSFETs -- 11.1 What Controls the Rate of Adoption? -- 11.2 New Capabilities Enabled by GaN Transistors -- 11.3 GaN Transistors are Easy to Use -- 11.4 Cost vs. Time -- 11.4.1 Starting Material -- 11.4.2 Epitaxial Growth -- 11.4.3 Wafer Fabrication -- 11.4.4 Test and Assembly -- 11.5 GaN Transistors are Reliable -- 11.6 Future Directions -- 11.7 Conclusion -- References -- Appendix -- Index -- End User License Agreement.
Abstract:
Gallium nitride (GaN) is an emerging technology that promises to displace silicon MOSFETs in the next generation of power transistors. As silicon approaches its performance limits, GaN devices offer superior conductivity and switching characteristics, allowing designers to greatly reduce system power losses, size, weight, and cost. This timely second edition has been substantially expanded to keep students and practicing power conversion engineers ahead of the learning curve in GaN technology advancements. Acknowledging that GaN transistors are not one-to-one replacements for the current MOSFET technology, this book serves as a practical guide for understanding basic GaN transistor construction, characteristics, and applications. Included are discussions on the fundamental physics of these power semiconductors, layout and other circuit design considerations, as well as specific application examples demonstrating design techniques when employing GaN devices. With higher-frequency switching capabilities, GaN devices offer the chance to increase efficiency in existing applications such as DC-DC conversion, while opening possibilities for new applications including wireless power transfer and envelope tracking. This book is an essential learning tool and reference guide to enable power conversion engineers to design energy-efficient, smaller and more cost-effective products using GaN transistors. Key features: Written by leaders in the power semiconductor field and industry pioneers in GaN power transistor technology and applications. Contains useful discussions on device-circuit interactions, which are highly valuable since the new and high performance GaN power transistors require thoughtfully designed drive/control circuits in order to fully achieve their performance potential. Features practical guidance on formulating specific circuit

designs when constructing power conversion systems using GaN transistors - see companion website for further details. A valuable learning resource for professional engineers and systems designers needing to fully understand new devices as well as electrical engineering students.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: