Cover image for Signal Processing for Cognitive Radios.
Signal Processing for Cognitive Radios.
Title:
Signal Processing for Cognitive Radios.
Author:
Jayaweera, Sudharman K.
ISBN:
9781118986769
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (809 pages)
Contents:
Signal Processing for Cognitive Radios -- Copyright -- Contents -- Preface -- Part I Introduction to Cognitive Radios -- Chapter 1 Introduction -- 1.1 Introduction -- 1.2 Signal Processing and Cognitive Radios -- 1.3 Software-Defined Radios -- 1.3.1 Software-Defined Radio Platforms -- 1.3.2 Software-Defined Radio Systems -- 1.4 From Software-Defined Radios to Cognitive Radios -- 1.4.1 The Spectrum Scarcity Problem -- 1.4.2 Emergence of CRs -- 1.5 What this Book is About -- 1.6 Summary -- Chapter 2 The Cognitive Radio -- 2.1 Introduction -- 2.2 A Functional Model of a Cognitive Radio -- 2.2.1 Spectrum Knowledge Acquisition (Spectrum Awareness) -- 2.2.2 Communications Decision-Making -- 2.2.3 Learning in Cognitive Radios -- 2.3 The Cognitive Radio Architecture -- 2.3.1 Spectrum Sensing Region of a Cognitive Engine -- 2.3.2 Radio Reconfiguration Region of a Cognitive Engine -- 2.3.3 Learning Region of a Cognitive Engine -- 2.3.4 Memory Region of a Cognitive Engine -- 2.4 The Ideal Cognitive Radio -- 2.5 Signal Processing Challenges in Cognitive Radios -- 2.6 Summary -- Chapter 3 Cognitive Radios and Dynamic Spectrum Sharing -- 3.1 Introduction -- 3.2 Interference and Spectrum Opportunities -- 3.3 Dynamic Spectrum Access -- 3.4 Dynamic Spectrum Leasing -- 3.5 Challenges in DSS Cognitive Radios -- 3.6 Cognitive Radios and Future of Wireless Communications -- 3.7 Summary -- Part II Theoretical Foundations -- Chapter 4 Introduction to Detection Theory -- 4.1 Introduction -- 4.2 Optimality Criteria: Bayesian versus Non-Bayesian -- 4.2.1 The Bayesian Approach -- 4.2.2 A Non-Bayesian Approach: Neyman-Pearson Optimality Criterion -- 4.3 Parametric Signal Detection Theory -- 4.3.1 Bayesian Optimal Detection -- 4.3.2 Neyman-Pearson Optimal Detection -- 4.3.3 Another Non-Bayesian Alternative: The Generalized Likelihood Ratio Test.

4.3.4 Parametric Signal Detection in Additive Noise -- 4.4 Nonparametric Signal Detection Theory -- 4.4.1 Signal Detection in Additive Zero-Median Noise: The Sign Test -- 4.4.2 Signal Detection in Additive Symmetric Noise: The Rank Test -- 4.4.3 Signal Detection in Additive Zero Median, Zero Mean, Finite-Variance Noise: The t-Test -- 4.5 Summary -- Chapter 5 Introduction to Estimation Theory -- 5.1 Introduction -- 5.2 Random Parameter Estimation: Bayesian Estimation -- 5.2.1 Minimum Mean-Squared Error Estimation -- 5.2.2 MMSE Estimation of Vector Parameters -- 5.2.3 Linear Minimum Mean-Squared Error Estimation -- 5.2.4 Maximum A Posteriori Probability Estimation -- 5.3 Nonrandom Parameter Estimation -- 5.3.1 Theory of Minimum Variance Unbiased Estimation -- 5.3.2 Best Linear Unbiased Estimator -- 5.3.3 Maximum Likelihood Estimation -- 5.3.4 Performance Bounds: Cramer-Rao Lower Bound -- 5.4 Summary -- Chapter 6 Power Spectrum Estimation -- 6.1 Introduction -- 6.2 PSD Estimation of a Stationary Discrete-Time Signal -- 6.2.1 Correlogram Method -- 6.2.2 Periodogram Method -- 6.2.3 Performance of the Periodogram PSD Estimate -- 6.3 Blackman-Tukey Estimator of the Power Spectrum -- 6.4 Other PSD Estimators Based on Modified Periodograms -- 6.4.1 Bartlett PSD Estimator -- 6.4.2 Welch PSD Estimator -- 6.5 PSD Estimation of Nonstationary Discrete-Time Signals -- 6.5.1 Temporally Windowed Observations -- 6.5.2 Temporal and Spectral Smoothing of PSD Estimates of Nonstationary Discrete-Time Signals -- 6.5.3 DFT-Based PSD Computation -- 6.6 Spectral Correlation of Cyclostationary Signals -- 6.6.1 Spectral Correlation and Spectral Autocoherence -- 6.6.2 Time-Averaged Spectral Correlation -- 6.6.3 Estimation of Spectral Correlation -- 6.7 Summary -- Chapter 7 Markov Decision Processes -- 7.1 Introduction -- 7.2 Markov Decission Processes -- 7.3 Finite-Horizon MDPs.

7.3.1 Definitions -- 7.3.2 Optimal Policies for MDPs -- 7.4 Infinite-Horizon MDPs -- 7.4.1 Stationary Optimal Policies for Infinite-Horizon MDPs -- 7.4.2 Bellman-Optimality Equations -- 7.5 Partially Observable Markov Decision Processes -- 7.5.1 Definitions -- 7.5.2 Policy Evaluation for a Finite-Horizon POMDP -- 7.5.3 Optimality Equations for a Finite-Horizon POMDP -- 7.5.4 Optimal Policy Computation for a Finite-Horizon POMDP -- 7.5.5 Infinite-Horizon POMDPs -- 7.6 Summary -- Chapter 8 Bayesian Nonparametric Classification -- 8.1 Introduction -- 8.2 K-Means Classification Algorithm -- 8.3 X-Means Classification Algorithm -- 8.4 Dirichlet Process Mixture Model -- 8.4.1 Dirichlet Process -- 8.4.2 Construction of the Dirichlet Process -- 8.4.3 DPMM -- 8.5 Bayesian Nonparametric Classification Based on the DPMM and the Gibbs Sampling -- 8.5.1 DPMM-Based Classification of Scalar Observations -- 8.5.2 DPMM-Based Classification of Multidimensional Gaussian Observations -- 8.5.3 DPMM-Based Classification of Possibly Non-Gaussian Multidimensional Observations -- 8.6 Summary -- Part III Signal Processing in Cognitive Radios -- Chapter 9 Wideband Spectrum Sensing -- 9.1 Introduction -- 9.2 Wideband Spectrum Sensing Problem -- 9.3 Wideband Spectrum Scanning Problem -- 9.4 Spectrum Segmentation and Subbanding -- 9.5 Wideband Spectrum Sensing Receiver -- 9.5.1 Homodyne Receiver Configuration -- 9.5.2 Super Heterodyne Digital Receiver Configuration -- 9.5.3 A/D Conversion and the Discrete-Time Received Signal Model -- 9.6 Subband Selection Problem in Wideband Spectrum Sensing -- 9.6.1 Subband Dynamics -- 9.6.2 A POMDP Model for Subband Selection -- 9.6.3 An Optimal Subband Selection Policy for Spectrum Sensing -- 9.6.4 A Reduced-Complexity Optimal Sensing Decision-Making Algorithm with Independent Channels.

9.6.5 A Reduced Complexity Optimal Sensing Decision-Making Algorithm with Independent Subbands -- 9.6.6 Optimal Myopic Sensing Decision Policies -- 9.7 A Reduced Complexity Optimal Subband Selection Framework with an Alternative Reward Function -- 9.7.1 A New Model for Subband Dynamics -- 9.7.2 A Simplified Reward Function and a Reduced-Complexity Optimal Policy -- 9.7.3 A Reduced Complexity Optimal Policy for Independent Subbands -- 9.7.4 Optimal Myopic Policies with Reduced Dimensional Subband State Vectors -- 9.8 Machine-Learning Aided Subband Selection Policies -- 9.8.1 Q-Learning -- 9.8.2 Q-Learning in a POMDP: A Q-Learning Algorithm for Subband Selection -- 9.9 Summary -- Chapter 10 Spectral Activity Detection inWideband Cognitive Radios -- 10.1 Introduction -- 10.2 Optimal Wideband Spectral Activity Detection -- 10.3 Wideband Spectral Activity Detection -- 10.4 Wavelet Transform-Based Wideband Spectral Activity Detection -- 10.4.1 Wavelet Transform -- 10.4.2 Edge Detection withWavelet Transform -- 10.4.3 Spectral Activity Detection Based on Edge Detection -- 10.5 Wideband Spectral Activity Detection in Non-Gaussian Noise -- 10.5.1 Arbitrary but Known Noise Distribution -- 10.5.2 Robust Spectral Activity Detection -- 10.6 Wideband Spectral Activity Detection with Compressive Sampling -- 10.6.1 Compressive Sampling -- 10.6.2 Compressive Sensing of Wideband Spectrum -- 10.7 Summary -- Chapter 11 Signal Classification inWideband Cognitive Radios -- 11.1 Introduction -- 11.2 Signal Classification Problem in a Wideband Cognitive Radio -- 11.3 Feature Extraction for Signal Classification -- 11.3.1 Carrier/Center Frequency -- 11.3.2 Cyclostationary Features -- 11.3.3 Modulation Type and Order Features -- 11.4 A Signal Classification Architecture for a Wideband Cognitive Radio -- 11.5 Bayesian Nonparametric Signal Classification.

11.6 Sequential Bayesian Nonparametric Signal Classification -- 11.7 Summary -- Chapter 12 Primary Signal Detection in DSA Cognitive Networks -- 12.1 Introduction -- 12.2 Spectrum Sensing Problem in Dynamic Spectrum Sharing CR Networks -- 12.3 Autonomous Spectrum Sensing for Dynamic Spectrum Sharing -- 12.3.1 Secondary User Sensing Observations -- 12.3.2 Channel-State (Idle/Busy) Decisions -- 12.4 Limitations of Autonomous Spectrum Sensing -- 12.5 Cooperative Spectrum Sensing for Dynamic Spectrum Sharing -- 12.6 Cooperative Channel-State Detection -- 12.6.1 Local Processing and Sensing Reports from Secondary Users -- 12.6.2 Final Channel-State Decisions at the SSDC: Decision Fusion -- 12.7 Summary -- Chapter 13 Spectrum Decision-Making in DSA Cognitive Networks -- 13.1 Introduction -- 13.2 Primary Channel Dynamic Model -- 13.3 Sensing Decisions in DSS Networks with Autonomous Cognitive Radios -- 13.3.1 Optimal Sensing Policy Determination -- 13.3.2 Optimal Myopic Sensing Policy Determination -- 13.4 Sensing Decisions in Cooperative DSS Networks -- 13.4.1 Optimal SSDC Decisions for Independent Channel Dynamics -- 13.4.2 Optimal Myopic Sensing Decisions at the SSDC with Independent Channel Dynamics -- 13.5 Summary -- Chapter 14 Dynamic Spectrum Leasing in Cognitive Radio Networks -- 14.1 Introduction -- 14.2 DSL with Direct Rewards to Primary Users -- 14.2.1 Interference at the Primary Receiver -- 14.2.2 A Game Model for Dynamic Spectrum Leasing -- 14.2.3 Nash Equilibria in Noncooperative Games -- 14.2.4 Existence of a Nash Equilibrium in the DSL Game -- 14.3 DSL Based on Asymmetric Cooperation with Primary Users -- 14.3.1 A Primary-Secondary Coexistence Model -- 14.3.2 Asymmetric Cooperative Communications-Based DSL between Primary Users and a Centralized Secondary Network.

14.3.3 Asymmetric Cooperative Communications-Based DSL between Primary Users and Autonomous Cognitive Secondary Users.
Abstract:
This book examines signal processing techniques for cognitive radios. The book is divided into three parts: Part I, is an introduction to cognitive radios and presents a history of the cognitive radio (CR), and introduce their architecture, functionalities, ideal aspects, hardware platforms, and state-of-the-art developments. Dr. Jayaweera also introduces the specific type of CR that has gained the most research attention in recent years: the CR for Dynamic Spectrum Access (DSA). Part II of the book, Theoretical Foundations, guides the reader from classical to modern theories on statistical signal processing and inference. The author addresses detection and estimation theory, power spectrum estimation, classification, adaptive algorithms (machine learning), and inference and decision processes. Applications to the signal processing, inference and learning problems encountered in cognitive radios are interspersed throughout with concrete and accessible examples. Part III of the book, Signal Processing in Radios, identifies the key signal processing, inference, and learning tasks to be performed by wideband autonomous cognitive radios. The author provides signal processing solutions to each task by relating the tasks to materials covered in Part II. Specialized chapters then discuss specific signal processing algorithms required for DSA and DSS cognitive radios.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: