Cover image for Biopharmaceutics Modeling and Simulations : Theory, Practice, Methods, and Applications.
Biopharmaceutics Modeling and Simulations : Theory, Practice, Methods, and Applications.
Title:
Biopharmaceutics Modeling and Simulations : Theory, Practice, Methods, and Applications.
Author:
Sugano, Kiyohiko.
ISBN:
9781118354315
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (521 pages)
Contents:
BIOPHARMACEUTICS MODELING AND SIMULATIONS -- CONTENTS -- PREFACE -- LIST OF ABBREVIATIONS -- 1 INTRODUCTION -- 1.1 An Illustrative Description of Oral Drug Absorption: The Whole Story -- 1.2 Three Regimes of Oral Drug Absorption -- 1.3 Physiology of the Stomach, Small Intestine, and Colon -- 1.4 Drug and API Form -- 1.4.1 Undissociable and Free Acid Drugs -- 1.4.2 Free Base Drugs -- 1.4.3 Salt Form Cases -- 1.5 The Concept of Mechanistic Modeling -- References -- 2 THEORETICAL FRAMEWORK I: SOLUBILITY -- 2.1 Definition of Concentration -- 2.1.1 Total Concentration -- 2.1.2 Dissolved Drug Concentration -- 2.1.3 Effective Concentration -- 2.2 Acid-Base and Bile-Micelle-Binding Equilibriums -- 2.2.1 Monoprotic Acid and Base -- 2.2.2 Multivalent Cases -- 2.2.3 Bile-Micelle Partitioning -- 2.2.4 Modified Henderson-Hasselbalch Equation -- 2.2.5 Kbm from Log Poct -- 2.3 Equilibrium Solubility -- 2.3.1 Definition of Equilibrium Solubility -- 2.3.2 pH-Solubility Profile (pH-Controlled Region) -- 2.3.3 Solubility in a Biorelevant Media with Bile Micelles (pH-Controlled Region) -- 2.3.4 Estimation of Unbound Fraction from the Solubilities with and without Bile Micelles -- 2.3.5 Common Ionic Effect -- 2.3.6 Important Conclusion from the pH-Equilibrium Solubility Profile Theory -- 2.3.7 Yalkowsky's General Solubility Equation -- 2.3.8 Solubility Increase by Converting to an Amorphous Form -- 2.3.9 Solubility Increase by Particle Size Reduction (Nanoparticles) -- 2.3.10 Cocrystal -- References -- 3 THEORETICAL FRAMEWORK II: DISSOLUTION -- 3.1 Diffusion Coefficient -- 3.1.1 Monomer -- 3.1.2 Bile Micelles -- 3.1.3 Effective Diffusion Coefficient -- 3.2 Dissolution and Particle Growth -- 3.2.1 Mass Transfer Equations: Pharmaceutical Science Versus Fluid Dynamics -- 3.2.2 Dissolution Equation with a Lump Sum Dissolution Rate Coefficient (kdiss).

3.2.3 Particle Size and Surface Area -- 3.2.3.1 Monodispersed Particles -- 3.2.3.2 Polydispersed Particles -- 3.2.4 Diffusion Layer Thickness I: Fluid Dynamic Model -- 3.2.4.1 Reynolds and Sherwood Numbers -- 3.2.4.2 Disk (Levich Equation) -- 3.2.4.3 Tube (Graetz Problem) -- 3.2.4.4 Particle Fixed to Space (Ranz-Marshall Equation) -- 3.2.4.5 Floating Particle -- 3.2.4.6 Nonspherical Particle -- 3.2.4.7 Minimum Agitation Speed for Complete Suspension -- 3.2.4.8 Other Factors -- 3.2.5 Diffusion Layer Thickness II: Empirical Models for Particles -- 3.2.6 Solid Surface pH and Solubility -- 3.3 Nucleation -- 3.3.1 General Description of Nucleation and Precipitation Process -- 3.3.2 Classical Nucleation Theory -- 3.3.2.1 Concept of Classical Nucleation Theory -- 3.3.2.2 Mathematical Expressions -- 3.3.3 Application of a Nucleation Theory for Biopharmaceutical Modeling -- References -- 4 THEORETICAL FRAMEWORK III: BIOLOGICAL MEMBRANE PERMEATION -- 4.1 Overall Scheme -- 4.2 General Permeation Equation -- 4.3 Permeation Rate Constant, Permeation Clearance, and Permeability -- 4.4 Intestinal Tube Flatness and Permeation Parameters -- 4.5 Effective Concentration for Intestinal Membrane Permeability -- 4.5.1 Effective Concentration for Unstirred Water Layer Permeation -- 4.5.2 Effective Concentration for Epithelial Membrane Permeation: the Free Fraction Theory -- 4.6 Surface Area Expansion by Plicate and Villi -- 4.7 Unstirred Water Layer Permeability -- 4.7.1 Basic Case -- 4.7.2 Particles in the UWL (Particle Drifting Effect) -- 4.8 Epithelial Membrane Permeability (Passive Processes) -- 4.8.1 Passive Transcellular Membrane Permeability: pH Partition Theory -- 4.8.2 Intrinsic Passive Transcellular Permeability -- 4.8.2.1 Solubility-Diffusion Model -- 4.8.2.2 Flip-Flop Model -- 4.8.2.3 Relationship between Ptrans,0 and log Poct 80 -- 4.8.3 Paracellular Pathway.

4.8.4 Relationship between log Doct, MW, and Fa% -- 4.9 Enteric Cell Model -- 4.9.1 Definition of Papp -- 4.9.2 Enzymatic Reaction: Michaelis-Menten Equation -- 4.9.3 First-Order Case 1: No Transporter and Metabolic Enzymes -- 4.9.4 First-Order Case 2: Efflux Transporter in Apical Membrane -- 4.9.5 Apical Efflux Transporter with Km and Vmax -- 4.9.6 Apical Influx Transporter with Km and Vmax -- 4.9.7 UWL and Transporter -- 4.9.7.1 No Transporter -- 4.9.7.2 Influx Transporter and UWL -- 4.9.7.3 Efflux Transporter -- 4.10 Gut Wall Metabolism -- 4.10.1 The Qgut Model -- 4.10.2 Simple Fg Models -- 4.10.3 Theoretical Consideration on Fg -- 4.10.3.1 Derivation of the Fg Models -- 4.10.3.2 Derivation of the Anatomical Fg Model -- 4.10.4 Interplay between CYP3A4 and P-gp -- 4.11 Hepatic Metabolism and Excretion -- References -- 5 THEORETICAL FRAMEWORK IV: GASTROINTESTINAL TRANSIT MODELS AND INTEGRATION -- 5.1 GI Transit Models -- 5.1.1 One-Compartment Model/Plug Flow Model -- 5.1.2 Plug Flow Model -- 5.1.3 Three-Compartment Model -- 5.1.4 S1I7CX (X = 1-4) Compartment Models -- 5.1.5 Convection-Dispersion Model -- 5.1.6 Tapered Tube Model -- 5.2 Time-Dependent Changes of Physiological Parameters -- 5.2.1 Gastric Emptying -- 5.2.2 Water Mass Balance -- 5.2.3 Bile Concentration -- 5.3 Integration 1: Analytical Solutions -- 5.3.1 Dissolution Under Sink Condition -- 5.3.1.1 Monodispersed Particles -- 5.3.1.2 Polydispersed Particles -- 5.3.2 Fraction of a Dose Absorbed (Fa%) -- 5.3.3 Approximate Fa% Analytical Solutions 1: Case-by-Case Solution -- 5.3.3.1 Permeability-Limited Case -- 5.3.3.2 Solubility-Permeability-Limited Case -- 5.3.3.3 Dissolution-Rate-Limited Case -- 5.3.4 Approximate Fa% Analytical Solutions 2: Semi-General Equations -- 5.3.4.1 Sequential First-Order Kinetics of Dissolution and Permeation -- 5.3.4.2 Minimum Fa% Model.

5.3.5 Approximate Fa% Analytical Solutions 3: FaSS Equation -- 5.3.5.1 Application Range -- 5.3.5.2 Derivation of Fa Number Equation -- 5.3.5.3 Refinement of the FaSS Equation -- 5.3.5.4 Advantage of FaSS Equation -- 5.3.5.5 Limitation of FaSS Equation -- 5.3.6 Interpretations of Fa Equations -- 5.3.7 Approximate Analytical Solution for Oral PK Model -- 5.4 Integration 2: Numerical Integration -- 5.4.1 Virtual Particle Bins -- 5.4.2 The Mass Balance of Dissolved Drug Amount in Each GI Position -- 5.4.3 Controlled Release of Virtual Particle Bin -- 5.5 In Vivo FA From PK Data -- 5.5.1 Absolute Bioavailability and Fa -- 5.5.2 Relative Bioavailability Between Solid and Solution Formulations -- 5.5.3 Relative Bioavailability Between Low and High Dose -- 5.5.4 Convolution and Deconvolution -- 5.5.4.1 Convolution -- 5.5.4.2 Deconvolution -- 5.6 Other Administration Routes -- 5.6.1 Skin -- References -- 6 PHYSIOLOGY OF GASTROINTESTINAL TRACT AND OTHER ADMINISTRATION SITES IN HUMANS AND ANIMALS -- 6.1 Morphology of Gastrointestinal Tract -- 6.1.1 Length and Tube Radius -- 6.1.2 Surface Area -- 6.1.2.1 Small Intestine -- 6.1.2.2 Colon -- 6.1.3 Degree of Flatness -- 6.1.3.1 Small Intestine -- 6.1.3.2 Colon -- 6.1.4 Epithelial Cells -- 6.1.4.1 Apical and Basolateral Lipid Bilayer Membranes -- 6.1.4.2 Tight Junction -- 6.1.4.3 Mucous Layer -- 6.2 Movement of the Gastrointestinal Tract -- 6.2.1 Transit Time -- 6.2.1.1 Gastric Emptying Time (GET) -- 6.2.1.2 Small Intestinal Transit Time -- 6.2.1.3 Colon Transit Time -- 6.2.2 Migrating Motor Complex -- 6.2.3 Agitation -- 6.2.3.1 Mixing Pattern -- 6.2.3.2 Agitation Strength -- 6.2.3.3 Unstirred Water Layer on the Intestinal Wall -- 6.3 Fluid Character of the Gastrointestinal Tract -- 6.3.1 Volume -- 6.3.1.1 Stomach -- 6.3.1.2 Small Intestine -- 6.3.1.3 Colon -- 6.3.2 Bulk Fluid pH and Buffer Concentration.

6.3.2.1 Stomach -- 6.3.2.2 Small Intestine -- 6.3.2.3 Colon -- 6.3.3 Microclimate pH -- 6.3.3.1 Small Intestine -- 6.3.3.2 Colon -- 6.3.4 Bile Micelles -- 6.3.4.1 Stomach -- 6.3.4.2 Small Intestine -- 6.3.4.3 Colon -- 6.3.5 Enzymes and Bacteria -- 6.3.6 Viscosity, Osmolality, and Surface Tension -- 6.4 Transporters and Drug-Metabolizing Enzymes in the Intestine -- 6.4.1 Absorptive Drug Transporters -- 6.4.1.1 PEP-T1 -- 6.4.1.2 OATP -- 6.4.2 Efflux Drug Transporters -- 6.4.2.1 P-gp -- 6.4.3 Drug-Metabolizing Enzymes -- 6.4.3.1 CYP3A4 -- 6.4.3.2 Glucuronyl Transferase and Sulfotransferase -- 6.5 Intestinal and Liver Blood Flow -- 6.5.1 Absorption Sites Connected to Portal Vein -- 6.5.2 Villous Blood Flow (Qvilli) -- 6.5.3 Hepatic Blood Flow (Qh) -- 6.6 Physiology Related to Enterohepatic Recirculation -- 6.6.1 Bile Secretion -- 6.6.2 Mass Transfer into/from the Hepatocyte -- 6.6.2.1 Sinusoidal Membrane (Blood to Hepatocyte) -- 6.6.2.2 Canalicular Membrane (Hepatocyte to Bile Duct) -- 6.7 Nasal -- 6.8 Pulmonary -- 6.8.1 Fluid in the Lung -- 6.8.2 Mucociliary Clearance -- 6.8.3 Absorption into the Circulation -- 6.9 Skin -- References -- 7 DRUG PARAMETERS -- 7.1 Dissociation Constant (pKa) -- 7.1.1 pH Titration -- 7.1.2 pH-UV Shift -- 7.1.3 Capillary Electrophoresis -- 7.1.4 pH-Solubility Profile -- 7.1.5 Calculation from Chemical Structure -- 7.1.6 Recommendation -- 7.2 Octanol-Water Partition Coefficient -- 7.2.1 Shake Flask Method -- 7.2.2 HPLC Method -- 7.2.3 Two-Phase Titration Method -- 7.2.4 PAMPA-Based Method -- 7.2.5 In Silico Method -- 7.2.6 Recommendation -- 7.3 Bile Micelle Partition Coefficient (Kbm) -- 7.3.1 Calculation from Solubility in Biorelevant Media -- 7.3.2 Spectroscopic Method -- 7.3.3 Recommendations -- 7.4 Particle Size and Shape -- 7.4.1 Microscope -- 7.4.2 Laser Diffraction -- 7.4.3 Dynamic Laser Scattering (DLS).

7.4.4 Recommendations.
Abstract:
A comprehensive introduction to using modeling and simulation programs in drug discovery and development Biopharmaceutical modeling has become integral to the design and development of new drugs. Influencing key aspects of the development process, including drug substance design, formulation design, and toxicological exposure assessment, biopharmaceutical modeling is now seen as the linchpin to a drug's future success. And while there are a number of commercially available software programs for drug modeling, there has not been a single resource guiding pharmaceutical professionals to the actual tools and practices needed to design and test safe drugs. A guide to the basics of modeling and simulation programs, Biopharmaceutics Modeling and Simulations offers pharmaceutical scientists the keys to understanding how they work and are applied in creating drugs with desired medicinal properties. Beginning with a focus on the oral absorption of drugs, the book discusses: The central dogma of oral drug absorption (the interplay of dissolution, solubility, and permeability of a drug), which forms the basis of the biopharmaceutical classification system (BCS) The concept of drug concentration How to simulate key drug absorption processes The physiological and drug property data used for biopharmaceutical modeling Reliable practices for reporting results With over 200 figures and illustrations and a peerless examination of all the key aspects of drug research-including running and interpreting models, validation, and compound and formulation selection-this reference seamlessly brings together the proven practical approaches essential to developing the safe and effective medicines of tomorrow.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: