Cover image for Solar Energy at Urban Scale.
Solar Energy at Urban Scale.
Title:
Solar Energy at Urban Scale.
Author:
Beckers, Benoit.
ISBN:
9781118613924
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (383 pages)
Contents:
Cover -- Solar Energy at Urban Scale -- Title Page -- Copyright Page -- Table of Contents -- Introduction -- The Authors -- Chapter 1. The Odyssey of Remote Sensing from Space: Half a Century of Satellites for Earth Observations -- 1.1. To improve the weather forecasts -- 1.2. Technological challenges to spy and to map from orbit -- 1.3. Toward global environmental observers in space -- 1.4. The digital revolution of the ICTs for GIS applications -- 1.5. Suggested reading -- Chapter 2. Territorial and Urban Measurements -- 2.1. Solar radiation at the Earth's surface -- 2.2. Instrumentation -- 2.2.1. Fundamentals of solar irradiance measurements -- 2.2.2. Solar radiometers -- 2.2.2.1. Pyrheliometers -- 2.2.2.2. Pyranometers -- 2.2.2.3. World radiometric reference -- 2.2.2.4. Radiometers calibration and uncertainty -- 2.2.2.5. Classification of pyranometers -- 2.2.3. Sunshine duration measurements -- 2.2.3.1. Burning card method -- 2.2.3.2. Pyranometric method -- 2.2.4. Data quality assessment -- 2.2.5. Data availability -- 2.3. Radiation measurements in urban environment -- 2.3.1. Description scales -- 2.3.2. Urban site description -- 2.3.3. WMO recommendations -- 2.3.3.1. Scope of measurements and measurement site selection -- 2.3.3.2. Measurements and corrections -- 2.4. Conclusions -- 2.5. Acknowledgments -- 2.6. Bibliography -- Chapter 3. Sky Luminance Models -- 3.1. CIE standard overcast sky (1955) -- 3.2. CIE standard clear sky (1996) -- 3.3. CIE standard general sky -- 3.4. All-weather model for sky luminance distribution - Perez -- 3.5. ASRC-CIE model -- 3.6. Igawa all-sky model -- 3.7. Absolute luminance -- 3.8. Visualization -- 3.9. Conclusion -- 3.10. Bibliography -- Chapter 4. Satellite Images Applied to Surface Solar Radiation Estimation -- 4.1. The solar resource.

4.2. Ground measurements of the solar resource -- 4.2.1. Ground instruments -- 4.2.2. The spatial variability of solar radiation -- 4.3. Satellite images for SSI estimation -- 4.4. Two different approaches for satellite-based SSI estimation -- 4.4.1. SSI clear-sky models -- 4.4.2. The inverse approach -- 4.4.2.1. The calculation of the cloud coverage index -- 4.4.2.2. The calculation of the GHI -- 4.4.3. The direct approach -- 4.5. Accuracy of satellite-based SSI estimations -- 4.6. Use of satellite observations for high-resolution solar radiation estimation -- 4.6.1. High-resolution solar atlas of Provence-Alpes-Côte d'Azur -- 4.6.1.1. Model for the variation of the optical path length -- 4.6.1.2. Model for sky obstruction effects by the orography -- 4.6.1.3. Uncertainty analysis of the solar atlas -- 4.6.1.4. Dissemination of the solar atlas -- 4.6.2. Solar resource assessment at urban scale -- 4.7. Bibliography -- Chapter 5. Worldwide Aspects of Solar Radiation Impact -- 5.1. Global energy budget at the Earth level -- 5.2. The distribution of solar radiation on the Earth's surface -- 5.2.1. Consequence of the unequal distribution of sunshine -- 5.2.2. Effect of the Earth's rotation -- 5.2.3. Influence of continental masses -- 5.3. The Sun at different latitudes -- 5.4. The solar diagrams -- 5.5. Climate and housing -- 5.6. Solar energy at urban scale -- 5.7. Conclusions and perspectives -- 5.8. Bibliography -- Chapter 6. Local Energy Balance -- 6.1. Introduction -- 6.2. Soil-vegetation-atmosphere transfer model -- 6.3. Physiographic data and boundary conditions -- 6.4. Solar radiation transfers -- 6.5. Infrared radiation transfers -- 6.6. Other heat fluxes -- 6.7. Conclusions -- 6.8. Bibliography -- Chapter 7. Evapotranspiration -- 7.1. Physical bases.

7.2. Related interest of different types of evapotranspirating surfaces -- 7.2.1. Bare soil -- 7.2.2. Grass-covered areas -- 7.2.3. Green roofs -- 7.2.4. Green walls -- 7.2.5. Trees -- 7.2.6. Parks -- 7.3. From microscale to city scale: the modeling approaches -- 7.3.1. Microscale -- 7.3.2. District scale -- 7.3.3. City scale -- 7.4. Conclusions -- 7.5. Bibliography -- Chapter 8. Multiscale Daylight Modeling for Urban Environments -- 8.1. Introduction -- 8.2. Background -- 8.2.1. Climate and microclimate -- 8.2.2. The urban solar microclimate -- 8.2.3. The USM and human experience -- 8.2.4. The USM in guidelines and recommendations -- 8.2.5. "Real" climate -- 8.2.6. Climate-based daylight modeling -- 8.3. Visualizing the urban solar microclimate -- 8.3.1. The San Francisco 3D model -- 8.3.2. Harvesting solar energy -- 8.3.3. A strategic evaluation of urban solar potential -- 8.3.4. Irradiation mapping of "virtual London" -- 8.4. The ASL building: a solar access study -- 8.4.1. Density and zoning in New York City -- 8.4.2. The Art Students League building -- 8.4.3. Quantifying the potential daylight injury -- 8.4.4. Outcomes and implications -- 8.5. Daylighting the New York Times building -- 8.5.1. 3D model for NYT building and surroundings -- 8.5.2. The spatiotemporal dynamics of sunlight exposure -- 8.5.3. Balancing daylight provision and visual comfort -- 8.6. Summary -- 8.7. Acknowledgments -- 8.8. Bibliography -- Chapter 9. Geometrical Models of the City -- 9.1. Introduction -- 9.1.1. Modeling challenges -- 9.1.2. State-of-the-art -- 9.2. Forward procedural modeling -- 9.2.1. Plants and architecture -- 9.2.2. Buildings and cities -- 9.2.3. Streets and parcels -- 9.3. Inverse procedural modeling -- 9.3.1. Inverse parameter estimation -- 9.3.2. Inverse procedure and parameter estimation.

9.4. Simulation-based modeling -- 9.5. Example systems -- 9.6. Bibliography -- Chapter 10. Radiative Simulation Methods -- 10.1. Introduction -- 10.2. Geometry -- 10.2.1. The geometric model -- 10.2.2. Solar geometry: calculating the Sun's position -- 10.2.2.1. Earth's revolution -- 10.2.2.2. Earth's rotation -- 10.2.2.3. Sun's azimuth and zenith angle -- 10.2.3. Geometric description of the environment of a point -- 10.2.3.1. Contribution of cartography -- 10.2.3.2. Urban geometry, stereography, and isochronous graph -- 10.3. Loading -- 10.3.1. Radiation sources: Sun and sky -- 10.3.2. Irradiance on differently oriented planes -- 10.3.2.1. Direct radiation on a plane always facing the Sun -- 10.3.2.2. Horizontal plane -- 10.3.2.3. Computation of energy -- 10.4. Computation model -- 10.4.1. Radiosity equations -- 10.4.2. View factors -- 10.4.2.1. Properties of the view factor -- 10.4.2.2. View factors algebra -- 10.4.2.3. Point to area view factor -- 10.4.3. Digital processing of the view factor -- 10.4.4. Characteristics of the discrete model: the mesh and its control -- 10.5. Transient thermal coupled problem -- 10.6. Conclusion -- 10.7. Bibliography -- Chapter 11. Radiation Modeling Using the Finite Element Method -- 11.1. Basic assumptions -- 11.2. Visibility and view factors -- 11.2.1. Definition -- 11.2.2. Monte Carlo-based ray-tracing method -- 11.3. Thermal balance equations -- 11.3.1. Conductive thermal balance -- 11.3.2. Radiation thermal balance -- 11.3.2.1. Gray approximation -- 11.3.2.2. Non-gray (multiband) solution -- 11.4. Finite element formulation -- 11.5. Example problems -- 11.6. Bibliography -- Chapter 12. Dense Cities in the Tropical Zone -- 12.1. Introduction -- 12.2. Access to the sky -- 12.3. Designing for daylight -- 12.4. Designing for solar access.

12.5. Designing with solar renewable energy -- 12.6. Conclusion -- 12.7. Bibliography -- Chapter 13. Dense Cities in Temperate Climates: Solar and Daylight Rights -- 13.1. Introduction -- 13.1.1. Urban form and thermal comfort -- 13.2. Solar rights in urban design -- 13.3. Solar envelopes as a design tool -- 13.4. Solar envelopes as a tool for urban development -- 13.5. Regulations and applications -- 13.6. Methods of application -- 13.7. A simple design tool -- 13.8. Modeling the building shape for self-shading using the solar collection envelope -- 13.9. Daylight rights -- 13.10. Daylight access -- 13.11. Conclusions -- 13.12. Bibliography -- Chapter 14. Solar Potential and Solar Impact -- 14.1. Methodological considerations -- 14.2. Definition of the residential area -- 14.3. Estimation of irradiance and solar gains -- 14.4. Estimation of energy needs for heating -- 14.5. Results analysis -- 14.6. Perspectives and conclusions -- 14.7. Acknowledgments -- 14.8. Bibliography -- Conclusion -- APPENDICES -- Appendix 1. Table of Europe's Platforms (Micro- and Minisatellites) for Earth Observations -- Appendix 2. Commercial Operators of Earth Observation (EO) Satellites (as of January 1, 2012) -- Appendix 3. Earth's Annual Global Mean Energy Budget -- List of Authors -- Index.
Abstract:
Increasing urbanization throughout the world, the depletion of fossil fuels and concerns about global warming have transformed the city into a physical problem of prime importance. This book proposes a multi-disciplinary and systematic approach concerning specialities as different as meteorology, geography, architecture and urban engineering systems, all surrounding the essential problem of solar radiation. It collects the points of view of 18 specialists from around the world on the interaction between solar energy and constructions, combining territorial, urban and architectural scales to better regulate energetic efficiency and light comfort for the sustainable city. The main subjects covered are: measures and models of solar irradiance (satellite observations, territorial and urban ground measurements, sky models, satellite data and urban mock-up), radiative contribution to the urban climate (local heat balance, radiative-aerodynamics coupling, evapotranspiration, Urban Heat Island), light and heat modeling (climate-based daylight modeling, geometrical models of the city, solar radiation modeling for urban environments, thermal simulation methods and algorithms) and urban planning, with special considerations for solar potential, solar impact and daylight rights in the temperate, northern and tropical climates, and the requirement of urban solar regulation. Contents 1. The Odyssey of Remote Sensing from Space: Half a Century of Satellites for Earth Observations, Théo Pirard. 2. Territorial and Urban Measurements, Marius Paulescu and Viorel Badescu. 3. Sky Luminance Models, Matej Kobav and Grega Bizjak. 4. Satellite Images Applied to Surface Solar Radiation Estimation, Bella Espinar and Philippe Blanc. 5. Worldwide Aspects of Solar Radiation Impact, Benoit Beckers. 6. Local Energy Balance, Pierre Kastendeuch. 7. Evapotranspiration,

Marjorie Musy. 8. Multiscale Daylight Modeling for Urban Environments, John Mardaljevic and George Janes. 9. Geometrical Models of the City, Daniel G. Aliaga. 10. Radiative Simulation Methods, Pierre Beckers and Benoit Beckers. 11. Radiation Modeling Using the Finite Element Method, Tom van Eekelen. 12. Dense Cities in the Tropical Zone, Edward Ng. 13. Dense Cities in Temperate Climates: Solar and Daylight Rights, Guedi Capeluto. 14. Solar Potential and Solar Impact, Frédéric Monette and Benoit Beckers. Appendix 1. Table of Europe's Platforms (Micro- and Minisatellites) for Earth Observations, Théo Pirard. Appendix 2. Commercial Operators of Earth Observation (EO) Satellites (as of January 1, 2012), Théo Pirard. Appendix 3. Earth's Annual Global Mean Energy Budget, Benoit Beckers.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: