Cover image for Nanoscale Communication Networks.
Nanoscale Communication Networks.
Title:
Nanoscale Communication Networks.
Author:
Bush, Stephen F.
ISBN:
9781608070046
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (326 pages)
Contents:
Nanoscale Communication Networks -- Contents -- Preface -- OBJECTIVE -- GENESIS -- APPROACH AND CONTENT -- Acknowledgments -- Chapter 1 Towards Nanonetworks -- 1.1 BRIEF HISTORICAL CONTEXT -- 1.2 NANOROBOTICS -- 1.3 DEFINITION OF NANONETWORKS -- 1.3.1 Requirements to be a nanonetwork -- 1.3.2 Driving forces behind nanoscale networking -- 1.3.3 Defined in relation to sensor networks -- 1.4 REVIEW OF NANOTECHNOLOGY RELATED TO COMMUNICATIONS -- 1.4.1 Nanotechnology for high-frequency classical wireless transmission -- 1.4.2 System-on-chip -- 1.5 TODAY'S SENSOR NETWORKS -- 1.5.1 Wireless sensor networks -- 1.5.2 Antenna -- 1.6 RELATIONSHIP BETWEEN PHYSICS AND INFORMATION -- 1.6.1 Physical entropy -- 1.6.2 Thermodynamics -- 1.6.3 Physics of information -- 1.6.4 A brief introduction to quantum phenomena -- 1.7 NEED FOR SELF-ASSEMBLY -- 1.7.1 Self-assembly for nanotube alignment -- 1.7.2 Self-assembly, complexity, and information theory -- 1.7.3 Active networking at the nanoscale -- 1.8 NEED FOR NANOSCALE INFORMATION THEORY -- 1.8.1 Capacity of networks -- 1.9 SUMMARY -- 1.10 EXERCISES -- Chapter 2 Molecular Motor Communication -- 2.1 MOLECULAR MOTORS ON RAILS -- 2.1.1 Where molecular motors are found and used in nature -- 2.1.2 Random walk and Brownian motion -- 2.1.3 Molecular motor operation: The mechanics of walking -- 2.2 THERMODYNAMICS OF MOLECULAR MOTORS -- 2.3 MICROTUBULES -- 2.3.1 Topology and persistence length -- 2.3.2 Towards routing and the ability to steer molecular motors -- 2.4 INTERFACING WITH MOLECULAR MOTORS -- 2.5 MOTOR VELOCITY, RELIABILITY, AND BANDWIDTH-DELAY PRODUCT -- 2.5.1 Automatic repeat request and reliable molecular motor communication channels -- 2.5.2 Genetic communication and error correction -- 2.6 INFORMATION THEORY AND MOLECULAR MOTOR PAYLOAD CAPACITY -- 2.6.1 Payload and information capacity.

2.6.2 DNA computing for nanoscale communication -- 2.7 OTHER TYPES OF MOTORS -- 2.7.1 Flagellar motors -- 2.7.2 Synthetic DNA motors -- 2.7.3 Catalytic motors -- 2.8 SUMMARY -- 2.9 EXERCISES -- Chapter 3 Gap Junction and Cell Signaling -- 3.1 INTRODUCTION -- 3.1.1 Calcium signaling in nature -- 3.1.2 Gap junction signaling -- 3.1.3 Intercell signaling -- 3.1.4 Long-distance nanoscale biological signaling -- 3.2 GAP JUNCTIONS -- 3.2.1 Liposomes: artificial containers -- 3.3 CELL SIGNALING -- 3.3.1 Network coding -- 3.4 MODELING BIOLOGICAL SIGNAL PROPAGATION AND DIFFUSION -- 3.4.1 Information concentration and propagation distance -- 3.4.2 Calcium waves -- 3.4.3 Calcium stores and relays -- 3.4.4 Gene and metabolic communication networks -- 3.5 OLFACTORY AND OTHER BIOLOGICAL COMMUNICATION -- 3.5.1 Memristors -- 3.5.2 Quorum sensing -- 3.5.3 Pheromone communication models and analysis -- 3.5.4 Neuronal communication -- 3.6 INFORMATION THEORETIC ASPECTS -- 3.6.1 Stochastic resonance -- 3.6.2 Towards human-engineered nanoscale biological communication networks -- 3.7 SUMMARY -- 3.8 EXERCISES -- Chapter 4 Carbon Nanotube-Based Nanonetworks -- 4.1 INTRODUCTION -- 4.1.1 Comparison with microtubules -- 4.1.2 Nanotubes and biology -- 4.2 NANOTUBES AS FIELD EFFECT TRANSISTORS -- 4.2.1 Electron transport -- 4.3 NANOTUBES AND QUANTUM COMPUTING -- 4.4 A SINGLE CARBON NANOTUBE RADIO -- 4.5 NANOTUBES AND GRAPH THEORY -- 4.5.1 Eigensystem network analysis -- 4.6 NANOTUBES AND SELF-ASSEMBLY -- 4.6.1 Active networking -- 4.6.2 Nanoscale active networking and routing -- 4.7 SEMIRANDOM CARBON NANOTUBE NETWORKS -- 4.7.1 Characteristics of a semirandom nanotube network -- 4.7.2 Data transmission in a semirandom nanotube network -- 4.7.3 Routing in a semirandom nanotube network -- 4.8 SUMMARY -- 4.9 EXERCISES -- Chapter 5 Nanoscale Quantum Networking -- 5.1 INTRODUCTION.

5.1.1 The nature of quantum networks -- 5.1.2 Forms of quantum networking -- 5.2 PRIMER ON QUANTUM COMPUTATION -- 5.2.1 What is quantum mechanics? -- 5.2.2 The nature of qubits -- 5.2.3 Postulate one -- 5.2.4 Postulate two -- 5.2.5 Measuring a qubit -- 5.2.6 Postulate three -- 5.2.7 Postulate four -- 5.2.8 The tensor product -- 5.3 QUANTUM ENTANGLEMENT -- 5.3.1 Superdense coding -- 5.3.2 Measurement of composite quantum states -- 5.3.3 The Bell inequality -- 5.3.4 Quantum cryptography example -- 5.4 TELEPORTATION -- 5.4.1 The spectral theorem -- 5.4.2 An alternative form of postulate two -- 5.4.3 Building a quantum communication network -- 5.4.4 Sharing entanglement in a quantum network -- 5.4.5 Quantum wire -- 5.5 SUMMARY -- 5.6 EXERCISES -- Chapter 6 Information Theory and Nanonetworks -- 6.1 INFORMATION THEORY PRIMER -- 6.1.1 Compression and the nature of information -- 6.1.2 Basic properties of entropy -- 6.1.3 Reliable communication in the presence of noise -- 6.1.4 Shannon versus Kolmogorov: Algorithmic information theory -- 6.1.5 Minimum description length and sophistication -- 6.2 QUANTUM INFORMATION THEORY -- 6.2.1 Quantum information -- 6.2.2 The limits of accessible information in a network -- 6.3 A FEW WORDS ON SELF-ASSEMBLY AND SELF-ORGANIZING SYSTEMS -- 6.3.1 Random nanotube networks, carbon nanotube radios, and information theory -- 6.4 MOLECULAR COMMUNICATION THEORY -- 6.4.1 Brownian motion and order statistics -- 6.4.2 Concentration encoding -- 6.4.3 A single nanoscale molecular channel -- 6.4.4 A multiple-access nanoscale molecular channel -- 6.4.5 A broadcast nanoscale molecular channel -- 6.4.6 A relay nanoscale molecular channel -- 6.5 SUMMARY -- 6.6 EXERCISES -- Chapter 7 Architectural Questions -- 7.1 INTRODUCTION -- 7.1.1 The definition of an architecture -- 7.2 ARCHITECTURAL PROPERTIES DERIVED FROM A FINITE AUTOMATA MODEL.

7.3 APPLYING LESSONS FROM OUTER SPACE TO INNER SPACE -- 7.3.1 Routing with Brownian motion -- 7.3.2 Localization in outer space -- 7.3.3 Localization in inner space -- 7.4 ARCHITECTURE OF EXTANT IN VIVO WIRELESS SYSTEMS -- 7.5 ACTIVE NETWORK ARCHITECTURE -- 7.5.1 The active network framework -- 7.5.2 Properties of execution environments -- 7.5.3 Active networks and self-healing -- 7.5.4 Complexity and evolutionary control -- 7.5.5 The application of a complexity measure in a communication network -- 7.5.6 Genetic network programming architecture -- 7.6 CARBON NANOTUBE NETWORK ARCHITECTURES -- 7.6.1 Random carbon nanotube network architecture -- 7.6.2 Single carbon nanotube radio architecture -- 7.7 THE QUANTUM NETWORK ARCHITECTURE -- 7.7.1 Quantum entanglement purification -- 7.7.2 Quantum network architecture -- 7.8 SUMMARY -- 7.9 EXERCISES -- Chapter 8 Conclusion -- 8.1 OLFACTORY COMMUNICATION -- 8.1.1 Towards odor communication -- 8.1.2 The odor receiver: The electronic nose -- 8.1.3 Pheromone impulse response -- 8.1.4 Towards an olfactory transmitter -- 8.2 AN INTERNET OF NANOSCALE NETWORKS -- 8.3 OPTICAL TRANSMISSION WITHIN NANOSCALE NETWORKS -- 8.3.1 Fluorescence resonance energy transfer -- 8.3.2 Electroluminescence -- 8.3.3 Molecular switches -- 8.4 INTERNETWORKING NANOSCALE NETWORKS -- 8.4.1 The design of an in vivo nanoscale network -- 8.5 NANOSCALE NETWORK APPLICATIONS -- 8.6 THE FUTURE OF NANONETWORKS -- 8.6.1 The IEEE Nano-Scale, Molecular, and Quantum Networking Subcommittee -- 8.7 EXERCISES -- Appendix: Nanoscale and Molecular Communication Network Simulation Tools -- MOLECULAR NETWORK SIMULATOR -- NETWORK-ON-CHIP SIMULATIONS -- CARBON NANOTUBE SIMULATION TOOLS -- BIOCHEMICAL SIMULATORS -- QUANTUM SIMULATION FOR NANOSCALE AND MOLECULAR NETWORKS -- SELF-ASSEMBLY SIMULATORS -- References -- About the Author -- Index.
Abstract:
A highly useful resource for professionals and students alike, this cutting-edge, first-of-its-kind book provides a thorough introduction to nanoscale communication networks. Written in a clear tutorial style, this volume covers a wide range of the most important topics in the area, from molecular communication and carbon nanotube nano-networks, to nanoscale quantum networking and the future direction of nano networks. Moreover, the book features numerous exercise problems at the end of each chapter to ensure a solid understanding of the material.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: