Cover image for Informatics for Materials Science and Engineering : Data-driven Discovery for Accelerated Experimentation and Application.
Informatics for Materials Science and Engineering : Data-driven Discovery for Accelerated Experimentation and Application.
Title:
Informatics for Materials Science and Engineering : Data-driven Discovery for Accelerated Experimentation and Application.
Author:
Rajan, Krishna.
ISBN:
9780123946140
Personal Author:
Physical Description:
1 online resource (542 pages)
Contents:
Front Cover -- Informatics for Materials Science and Engineering -- Copyright Page -- Contents -- Preface: A Reading Guide -- Acknowledgment -- 1. Materials Informatics: An Introduction -- 1. The What and Why of Informatics -- 2. Learning from Systems Biology: An "Omics" Approach to Mater -- 3. Where Do We Get the Information? -- 4. Data Mining: Data-Driven Materials Research -- References -- 2. Data Mining in Materials Science and Engineering -- 1. Introduction -- 2. Analysis Needs of Science Applications -- 3. The Scientific Data-Mining Process -- 4. Image Analysis -- 5. Dimension Reduction -- 5.1 Feature Selection Techniques -- Distance Filter -- Chi-Squared Filter -- Stump Filter -- ReliefF -- 5.2 Feature Transformation Techniques -- Principal Component Analysis (PCA) -- Isomap -- Locally Linear Embedding (LLE) -- Laplacian Eigenmaps -- 5.3 Comparison of Dimension Reduction Methods -- 6. Building Predictive and Descriptive Models -- 6.1 Classification and Regression -- 6.2 Clustering -- 7. Further Reading -- Acknowledgments -- References -- 3. Novel Approaches to Statistical Learning in Materials Science -- 1. Introduction -- 2. The Supervised Binary Classification Learning Problem -- 3. Incorporating Side Information -- 4. Conformal Prediction -- 5. Optimal Learning -- 6. Optimal Uncertainty Quantification -- 7. Clustering Including Statistical Physics Approaches -- 8. Materials Science Example: The Search for New Piezoelectrics -- 9. Conclusion -- 10. Further Reading -- Acknowledgments -- References -- 4. Cluster Analysis: Finding Groups in Data -- 1. Introduction -- 2. Unsupervised Learning -- 2.1 Principal Components Analysis -- 2.2 Clustering -- 3. Different Clustering Algorithms and their Implementations in R -- 3.1 Agglomerative Hierarchical -- 3.2 K-Means -- 3.3 Divisive Hierarchical -- 3.4 Partitioning Around Medoids (PAM).

3.5 Fuzzy Analysis (FANNY) -- 4. Validations of Clustering Results -- 4.1 Dunn Index -- 4.2 Silhouette Width -- 4.3 Connectivity -- 5. Rank Aggregation of Clustering Results -- 6. Further Reading -- Acknowledgments -- References -- 5. Evolutionary Data-Driven Modeling -- 1. Preamble -- 2. The Concept of Pareto Tradeoff -- 3. Evolutionary Neural Net and Pareto Tradeoff -- 4. Selecting the Appropriate Model in EvoNN -- 5. Conventional Genetic Programming -- 6. Bi-Objective Genetic Programming -- 6.1 BioGP Code -- 7. Analyzing the Variable Response in EvoNN and BioGP -- 8. An Application in the Materials Area -- 9. Further Reading -- References -- 6. Data Dimensionality Reduction in Materials Science -- 1. Introduction -- 2. Dimensionality Reduction: Basic Ideas and Taxonomy -- 3. Dimensionality Reduction Methods: Algorithms, Advantages, and Disadvantages -- 3.1 Principal Component Analysis (PCA) -- PCA Algorithm -- 3.2 Isomap -- Isomap Algorithm -- 3.3 Locally Linear Embedding -- LLE Algorithm -- 3.4 Hessian LLE -- hLLE Algorithm -- 4. Dimensionality Estimators -- 5. Software -- 5.1 Core Functionality -- 5.2 User Interface -- 6. Analyzing Two Material Science Data Sets: Apatites and Organic Solar Cells -- 6.1 Apatite Data -- Dimensionality Estimation -- 6.2 Unraveling Process-Morphology Pathways of Organic Solar Cells using SETDiR -- 7. Further Reading -- References -- 7. Visualization in Materials Research: Rendering Strategies of Large Data Sets -- 1. Introduction -- 2. Graphical Tools for Data Visualization: Case Study for Combinatorial Experiments -- 2.1 Heat Maps -- 2.2 Parallel Coordinates -- 2.3 Radial Visualization -- 2.4 Glyph Plots -- 3. Interactive Visualization: Querying Large Imaging Data Sets -- 3.1 Interactive Visualization of 3D Spatio-Spectral SIMS Data -- 3.2 Interactive Visualization of Atom-Probe Tomography Data.

3.3 Visualization of Simulations -- 4. Suggestions for Further Reading -- Acknowledgments -- References -- 8. Ontologies and Databases - Knowledge Engineering for Materials Informatics -- 1. Introduction -- 2. Ontologies -- 2.1 Ontologies, Vocabularies, and Materials Science Informatics -- 2.2 Challenges and Methods -- Complexity -- Systemic Complexity Modeling Methods -- Cognitive Architectures -- Human Expertise -- Relevance Computation -- Models as Agents -- 3. Databases -- 3.1 Roles -- Limitations -- Big Data -- Addressing Impacts of Complexity -- Knowledge Acquisition and Discovery -- Criticality of Relevance Computation in Big Data -- 3.2 Recent Initiatives -- Knowledge Engineering for Nanoinformatics -- Materials Science Proof of Concept Model -- 4. Conclusions and Further Reading -- References -- Websites -- 9. Experimental Design for Combinatorial Experiments -- 1. Introduction -- 2. Standard Design of Experiments (DOE) Methods -- 3. Mixture (Formulation) Designs -- 4. Compound Designs -- 5. Restricted Randomization, Split-Plot, and Related Designs -- 6. Evolutionary Designs -- 7. Designs for Determination of Kinetic Parameters -- 8. Other Methods -- 9. Gradient Spread Designs -- 10. Looking Forward -- References -- 10. Materials Selection for Engineering Design -- 1. Introduction -- 2. Systematic Selection -- 2.1 Translation -- 2.2 Screening -- 2.3 Ranking -- 2.4 Documentation -- 2.5 Why Are All These Steps Necessary? -- 3. Material Indices -- 3.1 Minimizing Mass: A Light, Strong Tie -- 3.2 Minimizing Mass: A Light, Stiff Panel -- 3.3 Minimizing Mass: A Light, Stiff Beam -- 3.4 Minimizing Material Cost: Cheap Ties, Panels, and Beams -- 4. Using Charts to Explore Material Properties -- 4.1 Screening: Constraints on Charts -- 4.2 Ranking: Indices on Charts -- 5. Practical Materials Selection: Tradeoff Methods -- 6. Material Substitution.

6.1 Using Indices for Scaling -- 7. Vectors for Material Development -- 7.1 Holes in Material Property Space -- 7.2 Hybrid Materials: Driving Development to Fill the Holes -- 7.3 Example of Hybrid Synthesis: Sandwich Structures -- 8. Conclusions and Suggested Further Reading -- References -- 11. Thermodynamic Databases and Phase Diagrams -- 1. Introduction -- 2. Thermodynamic Databases -- 2.1 Current Status of the Databases -- 2.2 An Internally Consistent Database -- 2.3 Problems of Databases -- Gibbs Energy -- Solution Models -- Programs and Principles of Assessment -- Metals and Ceramics at High Pressure -- 3. Examples of Phase Diagrams -- 3.1 Silicides -- Mn-Si -- W-Si -- 3.2 Phase Diagrams with In Situ Information -- 3.3 Phase Composition Diagrams -- Carbothermal Reduction of Silica -- The Mg-H2O System -- The NaOH-CH4 System -- 3.4 Phase Diagrams at High Pressure and Temperature -- The Iron Phase Diagram -- 3.5 Geochemical Phase Diagrams -- Solar-Gas Condensation -- Thermodynamic Evaluation of the Surface Rocks on Mars -- Planetary Interiors (Mars) -- 3.6 Some Databases of Interest -- References -- 12. Towards Rational Design of Sensing Materials from Combinatorial Experiments -- 1. Introduction -- 2. General Principles of Combinatorial Materials Screening -- 3. Opportunities for Sensing Materials -- 4. Designs of Combinatorial Libraries of Sensing Materials -- 5. Optimization of Sensing Materials Using Discrete Arrays -- 5.1 Radiant Energy Transduction Sensors -- 5.2 Mechanical Energy Transduction Sensors -- 5.3 Electrical Energy Transduction Sensors -- 6. Optimization of Sensing Materials Using Gradient Arrays -- 6.1 Variable Concentration and Composition of Reagents -- 6.2 Variable Operation Temperature -- 7. Summary and Outlook -- 8. Further Reading -- Acknowledgments -- References.

13. High-Performance Computing for Accelerated Zeolitic Materials Modeling -- 1. Introduction -- 2. GPGPU-Based Genetic Algorithms -- 3. Standard Optimization Benchmarks -- 3.1 Weierstrass-Mandelbrot Functions -- 3.2 Rosenbrock Function -- 4. Fast Generation of Four-Connected 3D Nets for Modeling Zeolite Structures -- 5. Real Zeolite Problem -- 5.1 Benchmark Tests -- 5.2 The MFI Framework -- 6. Further Reading -- References -- 14. Evolutionary Algorithms Applied to Electronic-Structure Informatics: Accelerated Materials Design Using Data Discovery v... -- 1. Introduction -- 2. Intuitive Approach to Correlations -- 2.1 Universal Correlations for Nanoparticle Core-Shell Behavior (Alloying) -- Origins from Electronic Structure -- What Was Our Purpose? -- 2.2 Universal Correlations for Molecular Adsorption on TM Surfaces -- Origins from Electronic Structure -- What Was Our Purpose? -- 3. Genetic Programming for Symbolic Regression -- 3.1 What is a GP? -- Fitness -- Population -- 4. Constitutive Relations Via Genetic Programming -- 5. Further Reading -- Acknowledgments -- References -- 15. Informatics for Crystallography: Designing Structure Maps -- 1. Introduction -- 2. Structure Map Design for Complex Inorganic Solids Via Principal Component Analysis -- 3. Structure Map Design for Intermetallics Via Recursive Partioning -- 4. Further Reading -- References -- 16. From Drug Discovery QSAR to Predictive Materials QSPR: The Evolution of Descriptors, Methods, and Models -- 1. Historical Perspective -- 2. The Science of MQSPR: Choice and Design of Material Property Descriptors -- 2.1. Constitutional Descriptors and Group Contributions -- 2.2. 2-D Descriptors -- 2.3. 3-D Descriptors -- 2.4. AIM-Derived Descriptors -- 2.5. Vibrational Spectral Descriptors for Materials Applications -- 3. Mathematical Methods for QSPR/QSAR/MQSPR.

3.1 Methods and Machine Learning Workflow.
Abstract:
Materials informatics: a 'hot topic' area in materials science, aims to combine traditionally bio-led informatics with computational methodologies, supporting more efficient research by identifying strategies for time- and cost-effective analysis. The discovery and maturation of new materials has been outpaced by the thicket of data created by new combinatorial and high throughput analytical techniques. The elaboration of this "quantitative avalanche"-and the resulting complex, multi-factor analyses required to understand it-means that interest, investment, and research are revisiting informatics approaches as a solution. This work, from Krishna Rajan, the leading expert of the informatics approach to materials, seeks to break down the barriers between data management, quality standards, data mining, exchange, and storage and analysis, as a means of accelerating scientific research in materials science. This solutions-based reference synthesizes foundational physical, statistical, and mathematical content with emerging experimental and real-world applications, for interdisciplinary researchers and those new to the field. Identifies and analyzes interdisciplinary strategies (including combinatorial and high throughput approaches) that accelerate materials development cycle times and reduces associated costs Mathematical and computational analysis aids formulation of new structure-property correlations among large, heterogeneous, and distributed data sets Practical examples, computational tools, and software analysis benefits rapid identification of critical data and analysis of theoretical needs for future problems.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: