Cover image for Building Physics - Heat, Air and Moisture : Fundamentals and Engineering Methods with Examples and Exercises.
Building Physics - Heat, Air and Moisture : Fundamentals and Engineering Methods with Examples and Exercises.
Title:
Building Physics - Heat, Air and Moisture : Fundamentals and Engineering Methods with Examples and Exercises.
Author:
Hens, Hugo S. L. C.
ISBN:
9783433602355
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (332 pages)
Contents:
Title -- Preface -- Table of Contents -- 0 Introduction -- 0.1 Subject of the book -- 0.2 Building Physics -- 0.2.1 Definition -- 0.2.2 Criteria -- 0.2.2.1 Comfort -- 0.2.2.2 Health -- 0.2.2.3 Architecture and materials -- 0.2.2.4 Economy -- 0.2.2.5 Sustainability -- 0.3 Importance of Building Physics -- 0.4 History of Building Physics -- 0.4.1 Heat, air and moisture -- 0.4.2 Building acoustics -- 0.4.3 Lighting -- 0.4.4 Thermal comfort and indoor air quality -- 0.4.5 Building physics and building services -- 0.4.6 Building physics and construction -- 0.4.7 What about the Low Countries? -- 0.5 Units and symbols -- 0.6 Literature -- 1 Heat Transfer -- 1.1 Overview -- 1.2 Conduction -- 1.2.1 Conservation of energy -- 1.2.2 Fourier's laws -- 1.2.2.1 First law -- 1.2.2.2 Second law -- 1.2.3 Steady state -- 1.2.3.1 What is it? -- 1.2.3.2 One dimension: flat assemblies -- 1.2.3.3 Two dimensions: cylinder symmetric -- 1.2.3.4 Two and three dimensions: thermal bridges -- 1.2.4 Transient regime -- 1.2.4.1 What? -- 1.2.4.2 Flat assemblies, periodic boundary conditions -- 1.2.4.3 Flat assemblies, random boundary conditions -- 1.2.4.4 Two and three dimensions -- 1.3 Convection -- 1.3.1 Heat exchange at a surface -- 1.3.2 Convective heat transfer -- 1.3.3 Convection typology -- 1.3.3.1 Driving forces -- 1.3.3.2 Flow type -- 1.3.4 Calculating the convective surface film coefficient -- 1.3.4.1 Analytically -- 1.3.4.2 Numerically -- 1.3.4.3 Dimensional analysis -- 1.3.5 Values for the convective surface film coefficient -- 1.3.5.1 Flat assemblies -- 1.3.5.2 Cavities -- 1.3.5.3 Pipes -- 1.4 Radiation -- 1.4.1 What is thermal radiation? -- 1.4.2 Quantities -- 1.4.3 Reflection, absorption and transmission -- 1.4.4 Radiant surfaces or bodies -- 1.4.5 Black bodies -- 1.4.5.1 Characteristics.

1.4.5.2 Radiant exchange between two black bodies: the view factor -- 1.4.5.3 Properties of view factors -- 1.4.5.4 Calculating view factors -- 1.4.6 Grey bodies -- 1.4.6.1 Characteristics -- 1.4.6.2 Radiant exchange between grey bodies -- 1.4.7 Coloured bodies -- 1.4.8 Practical formulae -- 1.5 Applications -- 1.5.1 Surface film coefficients and reference temperatures -- 1.5.1.1 Overview -- 1.5.1.2 Indoor environment -- 1.5.1.3 Outdoor environment -- 1.5.2 Steady state, one dimension: flat assemblies -- 1.5.2.1 Thermal transmittance and interface temperatures -- 1.5.2.2 Thermal resistance of a non ventilated, infinite cavity -- 1.5.2.3 Solar transmittance -- 1.5.3 Steady state, cylindrical coordinates: pipes -- 1.5.4 Steady state, two and three dimensions: thermal bridges -- 1.5.4.1 Calculation by the control volume method (CVM) -- 1.5.4.2 Practice -- 1.5.5 Steady state: windows -- 1.5.6 Steady state: building envelopes -- 1.5.6.1 Overview -- 1.5.6.2 Average thermal transmittance -- 1.5.7 Transient, periodic: flat assemblies. -- 1.5.8 Heat balances -- 1.5.9 Transient, periodic: spaces -- 1.5.9.1 Assumptions -- 1.5.9.2 Steady state heat balance -- 1.5.9.3 Harmonic heat balances 103 -- 1.6 Problems -- 1.7 Literature -- 2 Mass Transfer -- 2.1 Generalities -- 2.1.1 Quantities and definitions -- 2.1.2 Saturation degrees -- 2.1.3 Air and moisture transfer -- 2.1.4 Moisture sources -- 2.1.5 Air, moisture and durability -- 2.1.6 Link between mass and energy transfer -- 2.1.7 Conservation of mass -- 2.2 Air transfer -- 2.2.1 Overview -- 2.2.2 Air pressure differences 133 -- 2.2.2.1 Wind -- 2.2.2.2 Stack effects -- 2.2.2.3 Fans -- 2.2.3 Air permeances -- 2.2.4 Air transfer in open-porous materials -- 2.2.4.1 Conservation of mass -- 2.2.4.2 Flow equation -- 2.2.4.3 Air pressures.

2.2.4.4 One dimension: flat assemblies -- 2.2.4.5 Two and three dimensions -- 2.2.5 Air flow across permeable layers, apertures, joints, leaks and cavities -- 2.2.5.1 Flow equations -- 2.2.5.2 Conservation of mass: equivalent hydraulic circuit -- 2.2.6 Air transfer at building level -- 2.2.6.1 Definitions -- 2.2.6.2 Thermal stack -- 2.2.6.3 Large openings -- 2.2.6.4 Conservation of mass -- 2.2.6.5 Applications -- 2.2.7 Combined heat and air transfer -- 2.2.7.1 Open-porous materials -- 2.2.7.2 Air permeable layers, joints, leaks and cavities -- 2.3 Vapour transfer -- 2.3.1 Water vapour in the air -- 2.3.1.1 Overview -- 2.3.1.2 Quantities -- 2.3.1.3 Maximum vapour pressure and relative humidity -- 2.3.1.4 Changes of state in humid air -- 2.3.1.5 Enthalpy of humid air -- 2.3.1.6 Measuring air humidity -- 2.3.1.7 Applications -- 2.3.2 Water vapour in open-porous materials -- 2.3.2.1 Overview -- 2.3.2.2 Sorption isotherm and specific moisture ratio -- 2.3.2.3 Physics involved -- 2.3.2.4 Impact of salts -- 2.3.2.5 Consequences -- 2.3.3 Vapour transfer in the air -- 2.3.4 Vapour transfer in materials and assemblies -- 2.3.4.1 Flow equation -- 2.3.4.2 Conservation of mass -- 2.3.4.3 Vapour transfer by 'equivalent' diffusion -- 2.3.4.4 Vapour transfer by 'equivalent' diffusion and convection -- 2.3.5 Surface film coefficients for diffusion -- 2.3.6 Applications -- 2.3.6.1 Diffusion resistance of a cavity -- 2.3.6.2 Cavity ventilation -- 2.3.6.3 Water vapour balance in a space: surface condensation and drying -- 2.4 Moisture transfer -- 2.4.1 Overview -- 2.4.2 Moisture transfer in a pore -- 2.4.2.1 Capillarity -- 2.4.2.2 Water transfer -- 2.4.2.3 Vapour transfer -- 2.4.2.4 Moisture transfer -- 2.4.3 Moisture transfer in materials and assemblies -- 2.4.3.1 Transport equations -- 2.4.3.2 Conservation of mass.

2.4.3.3 Starting, boundary and contact conditions -- 2.4.3.4 Remark -- 2.4.4 Simplifying moisture transfer -- 2.4.4.1 The model -- 2.4.4.2 Applications -- 2.5 Problems -- 2.6 Literature -- 3 Combined heat-air-moisture transfer -- 3.1 Overview -- 3.2 Material and assembly level -- 3.2.1 Assumptions -- 3.2.2 Solution -- 3.2.3 Conservation laws -- 3.2.3.1 Mass -- 3.2.3.2 Energy -- 3.2.4 Flow equations -- 3.2.4.1 Heat -- 3.2.4.2 Mass, air -- 3.2.4.3 Mass, moisture -- 3.2.5 Equations of state -- 3.2.5.1 Enthalpy/temperature, vapour saturation pressure/temperature -- 3.2.5.2 Relative humidity/moisture content -- 3.2.5.3 Suction/moisture content -- 3.2.6 Starting, boundary and contact conditions -- 3.2.6.1 Starting conditions -- 3.2.6.2 Boundary conditions -- 3.2.6.3 Contact conditions -- 3.2.7 Two examples of simplified models -- 3.2.7.1 Non hygroscopic, non capillary materials -- 3.2.7.2 Hygroscopic materials at low moisture content -- 3.3 Building level -- 3.3.1 Overview -- 3.3.2 Balance equations -- 3.3.2.1 Vapour -- 3.3.2.2 Air -- 3.3.2.3 Heat -- 3.3.2.4 Closing the loop -- 3.3.3 Hygric inertia -- 3.3.3.1 Generalities -- 3.3.3.2 Sorption-active thickness -- 3.3.3.3 Zone with one sorption-active surface -- 3.3.3.4 Zone with several sorption-active surfaces -- 3.3.3.5 Harmonic analysis -- 3.3.4 Consequences -- 3.3.4.1 Steady state -- 3.3.4.2 Transient -- 3.4 Problems -- 3.5 Literature -- Postscript -- Problems and Solutions.
Abstract:
Bad experiences with construction quality, the energy crises of 1973 and 1979, complaints about 'sick buildings', thermal, acoustical, visual and olfactory discomfort, the need for good air quality, the move towards more sustainability, all have accelerated the development of a field, which until some 40 years ago was hardly more than an academic exercise: building physics. Building physics combines several knowledge domains such as heat and mass transfer, building acoustics, lighting, indoor environmental quality and energy efficiency. In some countries, also fire safety is included. Through the application of existing physical knowledge and the combination with information coming from other disciplines, the field helps to understand the physical phenomena governing assembly, building envelope, whole building and built environment performance, although for the last the wording "urban physics" is used. Building physics has a true impact on performance based building design. This volume focuses on heat, air, moisture transfer and its usage in building engineering applications.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: