Cover image for Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials.
Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials.
Title:
Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials.
Author:
de Bettencourt-Dias, Ana.
ISBN:
9781118682814
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (387 pages)
Contents:
Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials -- Contents -- List of Contributors -- Preface -- 1 Introduction to Lanthanide Ion Luminescence -- 1.1 History of Lanthanide Ion Luminescence -- 1.2 Electronic Configuration of the +III Oxidation State -- 1.2.1 The 4f Orbitals -- 1.2.2 Energy Level Term Symbols -- 1.3 The Nature of the f-f Transitions -- 1.3.1 Hamiltonian in Central Field Approximation and Coulomb Interactions -- 1.3.2 Spin-Orbit Coupling -- 1.3.3 Crystal Field or Stark Effects -- 1.3.4 The Crystal Field Parameters Bkq and Symmetry -- 1.3.5 Energies of Crystal Field Split Terms -- 1.3.6 Zeeman Effect -- 1.3.7 Point Charge Electrostatic Model -- 1.3.8 Other Methods to Estimate Crystal Field Parameters -- 1.3.9 Allowed and Forbidden f-f Transitions -- 1.3.10 Induced Electric Dipole Transitions and Their Intensity - Judd-Ofelt Theory -- 1.3.11 Transition Probabilities and Branching Ratios -- 1.3.12 Hypersensitive Transitions -- 1.3.13 Emission Efficiency and Rate Constants -- 1.4 Sensitisation Mechanism -- 1.4.1 The Antenna Effect -- 1.4.2 Non-Radiative Quenching -- References -- 2 Spectroscopic Techniques and Instrumentation -- 2.1 Introduction -- 2.2 Instrumentation in Luminescence Spectroscopy -- 2.2.1 Challenges in Design and Interpretation of Lanthanide Luminescence Experiments -- 2.2.2 Common Luminescence Experiments -- 2.2.3 Basic Design Elements and Configurations in Luminescence Spectrometers -- 2.2.4 Luminescence Spectrometer Components and Characteristics -- 2.2.5 Recent Advances in Luminescence Instrumentation -- 2.3 Measurement of Quantum Yields of Luminescence in the Solid State and in Solution -- 2.3.1 Measurement Against a Standard in Solution -- 2.3.2 Measurement Against a Standard in the Solid State -- 2.3.3 Absolute Measurement with an Integrating Sphere -- 2.4 Excited State Lifetimes.

2.4.1 Number of Coordinated Solvent Molecules -- References -- 3 Circularly Polarised Luminescence -- 3.1 Introduction -- 3.1.1 General Aspects: Molecular Chirality -- 3.1.2 Chiroptical Tools: from CD to CPL Spectroscopy -- 3.2 Theoretical Principles -- 3.2.1 General Theory -- 3.2.2 CPL Intensity Calculations, Selection Rules, Luminescence Selectivity, and Spectra-Structure Relationship -- 3.3 CPL Measurements -- 3.3.1 Instrumentation -- 3.3.2 Calibration and Standards -- 3.3.3 Artifacts in CPL Measurements -- 3.3.4 Proposed Instrumental Improvements to Record Eu(III)-Based CPL Signals -- 3.4 Survey of CPL Applications -- 3.4.1 Ln(III)-Containing Systems -- 3.4.2 Ln(III) Complexes with Achiral Ligands -- 3.4.3 Ln(III) Complexes with Chiral Ligands -- 3.5 Chiral Ln(III) Complexes to Probe Biologically Relevant Systems -- 3.5.1 Sensing through Coordination to the Metal Centre -- 3.5.2 Sensing through Coordination to the Antenna/Receptor Groups -- 3.6 Concluding Remarks -- References -- 4 Luminescence Bioimaging with Lanthanide Complexes -- 4.1 Introduction -- 4.2 Luminescence Microscopy -- 4.2.1 Classical Optical Microscopy: a Short Survey -- 4.2.2 Principle of Luminescence Microscopy -- 4.2.3 Principle of Time-resolved Luminescence Microscopy -- 4.2.4 Early Instrumental Developments for Time-resolved Microscopy with LLBs -- 4.2.5 Optimisation of Time-resolved Microscopy Instrumentation -- 4.2.6 Commercial Instruments -- 4.3 Bioimaging with Lanthanide Luminescent Probes and Bioprobes -- 4.3.1 β-Diketonate Probes -- 4.3.2 Aliphatic Polyaminocarboxylate and Carboxylate Probes -- 4.3.3 Macrocyclic Probes -- 4.3.4 Self-assembled Triple Helical Bioprobes -- 4.3.5 Other Bioprobes -- 4.4 Conclusions and Perspectives -- References -- 5 Two-photon Absorption of Lanthanide Complexes: from Fundamental Aspects to Biphotonic Imaging Applications -- 5.1 Introduction.

5.2 Two-photon Absorption, a Third Nonlinear Optical Phenomenon -- 5.2.1 Theoretical and Historical Background -- 5.2.2 Experimental Determination of the 2PA Efficiency of Molecules -- 5.2.3 Two-photon Fluorescence Microscopy for Biological Imaging -- 5.2.4 Molecular Engineering for Multiphonic Imaging -- 5.3 Spectroscopic Evidence for the Two-photon Sensitisation of Lanthanide Luminescence -- 5.3.1 1961: The Breakthrough Experiments -- 5.3.2 Two-photon Excitation of f-f Transitions -- 5.3.3 The Two-photon Antenna Effect -- 5.3.4 The Charge Transfer State Mediated Sensitisation Process -- 5.3.5 Optimising Molecular Two-photon Cross Section: the Brightness Trade-off -- 5.3.6 Two-photon Excited Luminescence in Solid Matrix -- 5.3.7 Two-photon Time-gated Spectroscopy -- 5.4 Towards Biphotonic Microscopy Imaging -- 5.4.1 Proof of Concept -- 5.4.2 Towards the Design of an Optimised Bio-probe -- 5.4.3 Design of Lanthanide containing Nano-probes, toward Single-object Imaging -- 5.4.4 Towards NIR-to-NIR Imaging -- 5.5 Conclusions -- References -- 6 Lanthanide Ion Complexes as Chemosensors -- 6.1 Photophysical Properties of LnIII Based Sensors -- 6.1.1 Emission Based Sensors -- 6.1.2 Luminescence Lifetime -- 6.1.3 Spectral Form, Hypersensitivity and Ratiometric Peaks -- 6.2 Sensor Design Principles -- 6.2.1 The Design of Ln-receptor Sites and Antenna Components -- 6.2.2 Covalent versus Self-assembled Ln-receptor Design -- 6.2.3 Sensors for Cations -- 6.2.4 Sensors for Anions -- 6.3 Interactions with DNA and Biological Systems -- References -- 7 Upconversion of Ln3+ -based Nanoparticles for Optical Bio-imaging -- 7.1 Introduction -- 7.2 Physical Properties of Ln3+ Ions -- 7.3 Basic Principles of Upconversion -- 7.4 Synthesis of Core and Core-Shell Nanoparticles -- 7.4.1 Syntheses in Organic Solvent -- 7.4.2 Syntheses in Aqueous Media.

7.4.3 Surface Modification -- 7.5 Characterisation -- 7.5.1 Basic Techniques -- 7.5.2 Advanced Techniques -- 7.6 Bio-imaging -- 7.6.1 Basics -- 7.6.2 Cell Studies -- 7.6.3 Animal Studies -- 7.6.4 Discussion -- 7.7 Upconversion and Magnetic Resonance Imaging -- 7.8 Conclusions and Outlook -- References -- 8 Direct Excitation Ln(III) Luminescence Spectroscopy to Probe the Coordination Sphere of Ln(III) Catalysts, Optical Sensors and MRI Agents -- 8.1 Introduction -- 8.1.1 Luminescence Spectroscopy for Defining the Ln(III) Coordination Sphere -- 8.2 Direct Excitation Lanthanide Luminescence -- 8.2.1 Luminescence Properties of the Lanthanide Ions -- 8.2.2 Ln(III) Excitation Spectroscopy -- 8.2.3 Ln(III) Emission Spectroscopy -- 8.2.4 Time-Resolved Ln(III) Luminescence Spectroscopy -- 8.2.5 Luminescence Resonance Energy Transfer -- 8.3 Defining the Ln(III) Ion Coordination Sphere through Direct Eu(III) Excitation Luminescence Spectroscopy -- 8.3.1 Eu(III) Complex Speciation in Solution: Number of Excitation Peaks -- 8.3.2 Excitation Spectra of Geometric Isomers -- 8.3.3 Innersphere Coordination of Anions -- 8.3.4 Ligand Ionisation -- 8.4 Luminescence Studies of Anion Binding in Catalysis and Sensing -- 8.4.1 Phosphate Ester Binding and Cleavage -- 8.4.2 Sensing Biologically Relevant Anions -- 8.5 Luminescence Studies of Ln(III) MRI Contrast Agents -- 8.5.1 Types of Ln(III) MRI Contrast Agents -- 8.5.2 Luminescence Studies of Ln(III) ParaCEST Agents -- 8.6 Conclusions -- References -- 9 Heterometallic Complexes Containing Lanthanides -- 9.1 Introduction -- 9.2 Properties of a Heteromultimetallic Complex -- 9.3 Lanthanide Assemblies in the Solid State -- 9.4 Lanthanide Assemblies in Solution -- 9.4.1 Lanthanide Helicates -- 9.4.2 Non-helicate Structures -- 9.5 Heterometallic Complexes Derived from Bridging and Multi-compartmental Ligands.

9.6 Energy Transfer in Assembled Systems -- 9.7 Responsive Multimetallic Systems -- 9.8 Summary and Prospects -- References -- Index -- End User License Agreement.
Abstract:
This comprehensive book presents the theoretical principles, current applications and latest research developments in the field of luminescent lanthanide complexes; a rapidly developing area of research which is attracting increasing interest amongst the scientific community. Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials begins with an introduction to the basic theoretical and practical aspects of lanthanide ion luminescence, and the spectroscopic techniques used to evaluate the efficiency of luminescence. Subsequent chapters introduce a variety of different applications including:  Circularly polarized luminescence  Luminescence bioimaging with lanthanide complexes  Two-photon absorption of lanthanide complexes  Chemosensors  Upconversion luminescence  Excitation spectroscopy  Heterometallic complexes containing lanthanides Each chapter presents a detailed introduction to the application, followed by a description of experimental techniques specific to the area and an extensive review of recent literature. This book is a valuable introduction to the literature for scientists new to the field, as well as providing the more experienced researcher with a comprehensive resource covering the most relevant information in the field; a 'one stop shop' for all key references.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: