Cover image for MATHEMATICAL MECHANICS : From Particle to Muscle.
MATHEMATICAL MECHANICS : From Particle to Muscle.
Title:
MATHEMATICAL MECHANICS : From Particle to Muscle.
Author:
Cooper, Ellis D.
ISBN:
9789814289719
Personal Author:
Physical Description:
1 online resource (390 pages)
Series:
WORLD SCIENTIFIC SERIES ON NONLINEAR SCIENCE SERIES A
Contents:
Contents -- Acknowledgments -- Introduction -- 1. Introduction -- 1.1 Why Would I Have Valued This Book in High School? -- 1.2 Who Else Would Value This Book? -- 1.3 Physics & Biology -- 1.4 Motivation -- 1.5 The Principle of Least Thought . -- 1.6 Measurement -- 1.7 Conceptual Blending -- 1.8 Mental Model of Muscle Contraction -- 1.9 Organization -- 1.10 What is Missing? -- 1.11 What is Original? -- Mathematics -- 2. Ground & Foundation of Mathematics -- 2.1 Introduction -- 2.2 Ground: Discourse & Surface -- 2.2.1 Symbol & Expression -- 2.2.2 Substitution & Rearrangement -- 2.2.3 Diagrams Rule by Diagram Rules -- 2.2.4 Dot & Arrow -- 2.3 Foundation: Category & Functor -- 2.3.1 Category -- 2.3.2 Functor -- 2.3.3 Isomorphism -- 2.4 Examples of Categories & Functors -- 2.4.1 Finite Set -- 2.4.2 Set -- 2.4.3 Exponentiation of Sets -- 2.4.4 Pointed Set -- 2.4.5 Directed Graph -- 2.4.6 Dynamic System -- 2.4.7 Initialized Dynamic System -- 2.4.8 Magma -- 2.4.9 Semigroup -- 2.4.10 Monoid -- 2.4.11 Group -- 2.4.12 Commutative Group -- 2.4.13 Ring -- 2.4.14 Field -- 2.4.15 Vector Space over a Field -- 2.4.16 Ordered Field -- 2.4.17 Topology -- 2.5 Constructions -- 2.5.1 Magma Constructed from a Set -- 2.5.2 Category Constructed from a Directed Graph -- 2.5.3 Category Constructed from a Topological Space -- 3. Calculus as an Algebra of Infinitesimals -- 3.1 Real & Hyperreal -- 3.2 Variable -- 3.2.1 Computer Program Variable -- 3.2.2 Mathematical Variable -- 3.2.3 Physical Variable -- 3.3 Right, Left & Two-Sided Limit -- 3.4 Continuity -- 3.5 Differentiable, Derivative & Differential -- 3.5.1 Partial Derivative -- 3.6 Curve Sketching Reminder -- 3.7 Integrability -- 3.8 Algebraic Rules for Calculus -- 3.8.1 Fundamental Rule -- 3.8.2 Constant Rule -- 3.8.3 Addition Rule -- 3.8.4 Product Rule -- 3.8.5 Scalar Product Rule -- 3.8.6 Chain Rule.

3.8.7 Exponential Rule -- 3.8.8 Change-of-Variable Rule -- 3.8.9 Increment Rule -- 3.8.10 Quotient Rule -- 3.8.11 Intermediate Value Rule -- 3.8.12 Mean Value Rule -- 3.8.13 Monotonicity Rule -- 3.8.14 Inversion Rule -- 3.8.15 Cyclic Rule -- 3.8.16 Homogeneity Rule -- 3.9 Three Gaussian Integrals -- 3.10 Three Differential Equations -- 3.11 Legendre Transform -- 3.12 Lagrange Multiplier -- 4. Algebra of Vectors -- 4.1 Introduction -- 4.2 When is an Array a Matrix? -- 4.3 List Algebra -- 4.3.1 Abstract Row List -- 4.3.2 Set of Row Lists -- 4.3.3 Inclusion of Row Lists -- 4.3.4 Projection of Row Lists -- 4.3.5 Row List Algebra -- 4.3.6 Monoid Constructed from a Set -- 4.3.7 Column List Algebra & Natural Transformation -- 4.3.8 Lists of Lists -- 4.3.8.1 Rows of Columns and Columns of Rows -- 4.3.8.2 Flattening of rows of rows -- 4.4 Table Algebra -- 4.4.1 The Empty and Unit Tables -- 4.4.2 The Set of All Tables -- 4.4.3 Juxtaposition of Tables is a Table -- 4.4.4 Outer Product of Two Lists is a Table -- 4.5 Vector Algebra -- 4.5.1 Category of Vector Spaces & Vector Operators -- 4.5.2 Vector Space Isomorphism -- 4.5.3 Inner Product -- 4.5.4 Vector Operator Algebra -- 4.5.5 Dual Vector Space -- 4.5.6 Double Dual Vector Space -- 4.5.7 The Unique Extension of a Vector Operator -- 4.5.8 The Vector Space of Matrices -- 4.5.9 The Matrix of a Vector Operator -- 4.5.10 Operator Composition & Matrix Multiplication -- 4.5.11 More on Vector Operators -- Particle Mechanics -- 5. Particle Universe -- 5.1 Conservation of Energy & Newton's Second Law -- 5.2 Lagrange's Equations & Newton's Second Law -- 5.3 The Invariance of Lagrange's Equations -- 5.4 Hamilton's Principle -- 5.5 Hamilton's Equations -- 5.6 A Theorem of George Stokes -- 5.7 A Theorem on a Series of Impulsive Forces -- 5.8 Langevin's Trick -- 5.9 An Argument due to Albert Einstein.

5.10 An Argument due to Paul Langevin -- Timing Machinery -- 6. Introduction to Timing Machinery -- 6.1 Blending Time & State Machine -- 6.2 The Basic Oscillator -- 6.3 Timing Machine Variable -- 6.4 The Robust Low-Pass Filter -- 6.5 Frequency Multiplier & Di erential Equation -- 6.6 Probabilistic Timing Machine -- 6.7 Chemical Reaction System Simulation -- 6.8 Computer Simulation -- 7. Stochastic Timing Machinery -- 7.1 Introduction -- 7.1.1 Syntax for Drawing Models -- 7.1.2 Semantics for Interpreting Models -- 7.2 Examples -- 7.2.1 The Frequency Doubler of Brian Stromquist -- 7.3 Zero-Order Chemical Reaction -- 7.3.1 Newton's Second Law -- 7.3.2 Gillespie Exact Stochastic Simulation -- 7.3.3 Brownian Particle in a Force Field -- 7.3.3.1 From Random Walk to Smoluchowski's Equation -- 7.3.3.2 A Simpler, Equivalent Stochastic Timing Machine -- Theory of Substances -- 8. Algebraic Thermodynamics -- 8.1 Introduction -- 8.2 Chemical Element, Compound & Mixture -- 8.3 Universe -- 8.4 Reservoir & Capacity -- 8.5 Equilibrium & Equipotentiality -- 8.6 Entropy & Energy -- 8.7 Fundamental Equation -- 8.8 Conduction & Resistance -- 9. Clausius, Gibbs & Duhem -- 9.1 Clausius Inequality -- 9.2 Gibbs-Duhem Equation -- 10. Experiments & Measurements -- 10.1 Experiments -- 10.1.1 Boyle, Charles & Gay-Lussac Experiment -- 10.1.2 Rutherford-Joule Friction Experiment -- 10.1.3 Joule-Thomson Free Expansion of an Ideal Gas -- 10.1.4 Iron-Lead Experiment -- 10.1.5 Isothermal Expansion of an Ideal Gas -- 10.1.6 Reaction at Constant Temperature & Volume -- 10.1.7 Reaction at Constant Pressure & Temperature -- 10.1.8 Théophile de Donder & Chemical Affinity -- 10.1.9 Gibbs Free Energy -- 10.2 Measurements -- 10.2.1 Balance Measurements -- 11. Chemical Reaction -- 11.1 Chemical Reaction Extent, Completion & Realization -- 11.2 Chemical Equilibrium.

11.3 Chemical Formations & Transformations -- 11.4 Monoidal Category & Monoidal Functor -- 11.5 Hess' Monoidal Functor -- Muscle Contraction Research -- 12. Muscle Contraction -- 12.1 Muscle Contraction: Chronology -- 12.1.1 19th Century -- 12.1.2 1930-1939 -- 12.1.3 1940-1949 -- 12.1.4 1950-1959 -- 12.1.5 1960-1969 -- 12.1.6 1970-1979 -- 12.1.7 1980-1989 -- 12.1.8 1990-1999 -- 12.1.9 2000-2010 -- 12.2 Conclusion -- Appendices -- Appendix A Exponential & Logarithm Functions -- Appendix B Recursive Definition of Stochastic Timing Machinery -- B.1 Ordinary Differential Equation: Initial Value Problem -- B.2 Stochastic Differential Equation: A Langevin Equation without Inertia -- B.3 Gillespie Exact Stochastic Simulation: Chemical Master Equation -- B.4 Stochastic Timing Machine: Abstract Theory -- Appendix C MATLAB Code -- C.1 Stochastic Timing Machine Interpreter -- C.2 MATLAB for Stochastic Timing Machinery Simulations -- C.3 Brownian Particle in Force Field -- C.4 Figures. Simulating Brownian Particle in Force Field -- Appendix D Fundamental Theorem of Elastic Bodies -- Bibliography -- Index.
Abstract:
This unprecedented book offers all the details of the mathematical mechanics underlying modern modeling of skeletal muscle contraction. The aim is to provide an integrated vision of mathematics, physics, chemistry and biology for this one understanding. T.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: