Cover image for The Mechanics of Constitutive Modeling.
The Mechanics of Constitutive Modeling.
Title:
The Mechanics of Constitutive Modeling.
Author:
Ottosen, Niels Saabye.
ISBN:
9780080525693
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (759 pages)
Contents:
Front Cover -- The Mechanics of Constitutive Modeling -- Copyright Page -- Contents -- Preface -- Chapter 1. Notations and Cartesian tensors -- 1.1 Matrix notation -- 1.2 Cartesian coordinate system -- 1.3 Index notation -- 1.4 Change of coordinate system -- 1.5 Cartesian tensors -- 1.6 Example of tensors - Isotropic tensors -- Chapter 2. Strain tensor -- 2.1 Introduction -- 2.2 Small strain tensor -- 2.3 Rigid-body motions -- 2.4 Physical significance of the strain tensor -- 2.5 Change of coordinate system -- 2.6 Principal strains and principal directions - Invariants -- 2.7 Extremum values of the normal strain -- 2.8 Cayley-Hamilton's theorem -- 2.9 Deviatoric strains -- 2.10 Important strain invariants -- 2.11 Change of coordinate system - Mohr's circle -- 2.12 Special states of strain -- Chapter 3. Stress tensor -- 3.1 Introduction -- 3.2 Change of coordinate system -- 3.3 Principal stresses and principal directions - Invariants -- 3.4 Stress deviator tensor -- 3.5 Change of coordinate system - Mohr's circle -- 3.6 Special states of stress -- 3.7 Equations of motion -- 3.8 Weak formulation - Principle of virtual work -- Chapter 4. Hyper-elasticity -- 4.1 Strain energy and hyper-elasticity -- 4.2 Complementary energy and hyper-elasticity -- 4.3 Linear hyper-elasticity Anisotropy -- 4.4 Linear elasticity - Matrix formulation -- 4.5 Change of coordinate system when using matrix format -- 4.6 Anisotropy in linear hyper-elasticity -- 4.7 Initial strains - Thermoelasticity -- 4.8 Most general isotropic hyper-elasticity -- 4.9 Isotropic linear elasticity -- 4.10 Nonlinear isotropic Hooke formulation -- 4.11 Plane strain -- 4.12 Plane stress -- 4.13 Incompressible linear hyper-elasticity -- Chapter 5. Cauchy-elasticity -- 5.1 Response function, principle of coordinate invariance and isotropic tensor function.

5.2 Most general isotropic Cauchy-elasticity -- 5.3 Proof of most general form of isotropic Cauchy-elasticity -- 5.4 Nonlinear isotropic Hooke formulation -- Chapter 6. Representation theorems -- 6.1 Scalar functions -- 6.2 Second-order tensor functions -- 6.3 Thermoelasticity -- 6.4 Viscoelasticity -- 6.5 Orthotropic linear elasticity -- 6.6 Transverse isotropic linear elasticity -- Chspter 7. Hypo - elasticity -- 7.1 Time-independent response -- Chapter 8. Failure and initial yield criteria -- 8.1 Haigh-Westergaard coordinate system - Geometrical interpretation of stress invariants -- 8.2 Symmetry properties of the failure or initial yield curve in the deviatoric plane -- 8.3 von Mises criterion -- 8.4 Drucker-Prager criterion -- 8.5 Coulomb criterion -- 8.6 Mohr's failure mode criterion -- 8.7 Tresca criterion -- 8.8 Experimental results for metals and steel - von Mises versusTresca -- 8.9 Rankine criterion and modified Coulomb criterion -- 8.10 Experimental results for concrete versus the modified Coulomb criterion -- 8.11 4-parameter criterion -- 8.12 Experimental results for concrete versus the 4-parameter criterion -- 8.13 Anisotropic criteria -- Chapter 9. Introduction to plasticity theory -- 9.1 Change of yield surface due to loading - Hardening rules -- 9.2 Development of plastic strains - Introductory remarks -- 9.3 Drucker's postulate and its consequences -- 9.4 Consistency relation and evolution laws -- 9.5 Preliminary loading and unloading criteria -- 9.6 Isotropic hardening of a von Mises material -- 9.7 Proportional loading of isotropic hardening von Mises material -- 9.8 Conditions for plastic incompressibility -- Chapter 10. General plasticity theory -- 10.1 Fundamental equations -- 10.2 Generalized plastic modulus - Relation between stress rates and total strain rates -- 10.3 Evaluation of plastic modulus H.

10.4 General loading and unloading criteria -- 10.5 Plane strain -- 10.6 Plane stress -- Chapter 11. Plastic collapse theorems -- 11.1 Lower bound theorem -- 11.2 Upper bound theorem -- 11.3 Simple example -- 11.4 Nonassociated plasticity -- Chapter 12. Common plasticity models -- 12.1 Experimental characteristics -- 12.2 Isotropic von Mises hardening -- 12.3 Kinematic von Mises hardening -- 12.4 Mixed von Mises hardening -- 12.5 Melan-Prager's evolution law versus Ziegler's evolution law -- 12.6 Orthotropic Hill plasticity -- 12.7 Drucker-Prager plasticity. Frictional materials -- Chapter 13. Nonlinear kinematic hardening laws -- 13.1 Mro'z model -- 13.2 Bounding surface models -- 13.3 Armstrong and Frederick model -- Chapter 14. Introduction to time-dependent material behavior -- 14.1 Viscoelasticity -- 14.2 Differential equation approach -- 14.3 Hereditary approach -- Chapter 15. Creep and viscoplasticity -- 15.1 Results based on the standard creep test -- 15.2 Uniaxial stress changes - Classical hardening rules -- 15.3 Multiaxial stress states -- 15.4 Viscoplasticity -- Chapter 16. Nonlinear finite element method -- 16.1 Equations of motion -- 16.2 Static conditions -- Chapter 17. Solution of nonlinear equilibrium equations -- 17.1 Euler forward scheme -- 17.2 General iteration format -- 17.3 Standard iteration format for equilibrium iterations . Iteration matrix -- 17.4 Newton-Raphson scheme -- 17.5 Initial stiffness and modified Newton-Raphson schemes -- 17.6 Consideration of boundary condtions -- 17.7 Convergence criteria -- 17.8 Quasi-Newton methods -- 17.9 Line search -- 17.10 Limit points -- 17.11 Bergan's minimum residual force method -- Chapter 18. Integration of constitutive equations -- 18.1 Elasto-plasticity -- 18.2 Viscoplasticity -- Chapter 19. Solution of dynamic finite element equations -- 19.1 Introduction -- 19.2 Explicitscheme.

19.3 Implicit schemes -- Chapter 20. Basic principles of thermodynamics -- 20.1 Temperature - Absolute temperature -- 20.2 Heat and heat flow -- 20.3 State variables and state functions . Introduction to the first law -- 20.4 First law of thermodynamics -- 20.5 Ideal gases -- 20.6 Reversible and irreversible processes -- 20.7 Introduction to the second law -- 20.8 Efficiency of various heat engines -- 20.9 The Carnot process -- 20.10 Thermodynamic temperature scale -- 20.11 Entropy - Clausius's inequality -- 20.12 Maximum entropy at thermodynamic equilibrium -- 20.13 The second law and the Clausius-Duhem inequality -- 20.14 Various approaches to thermodynamics -- Chapter 21. Thermodynamic framework for constitutive modeling -- 21.1 Thermo-elastic materials -- 21.2 Inelastic materials - Internal variables -- 21.3 Choice of evolution laws - Fulfillment of the mechanical dissipation inequality -- 21.4 Heat equation -- 21.5 Properties of state functions at thermodynamical equilibrium -- Chapter 22. Plasticity, viscoplasticity and viscoeasticity -- 22.1 Fundamental equations of plasticity -- 22.2 Further discussion of the postulate of maximum dissipation -- 22.3 Examples of typical plasticity models -- 22.4 Use of plastic work as internal variable -- 22.5 Corner plasticity -- 22.6 Viscoplasticity -- 22.7 Viscoelasticity -- Chapter 23. Thermo-plasticity -- 23.1 Change of material parameters with temperature -- 23.2 Equations of thermo-plasticity -- 23.3 Isotropic hardening von Uses plasticity -- 23.4 Field equations - Finite element formulation -- 23.5 Solution of uncoupled thermo-plasticity -- 23.6 Solution of coupled thermo-plasticity -- 23.7 Adiabatic heating -- 23.8 Staggered solution scheme -- Chapter 24. Uniqueness and discontinuous bifurcations -- 24.1 Simple illustration - Tension bar -- 24.2 Equations of plasticity theory.

24.3 Uniqueness of elasto-plastic materials -- 24.4 Discontinuous bifurcations -- 24.5 Acceleration waves -- A Convexity - Minimiza tion of function subject to constraints -- A.l Convexfunction -- A.2 Unconstrained minimum -- A.3 Inequality constrained minimum . Kuhn-Tucker relations -- Bibliography -- Index.
Abstract:
Constitutive modelling is the mathematical description of how materials respond to various loadings. This is the most intensely researched field within solid mechanics because of its complexity and the importance of accurate constitutive models for practical engineering problems. Topics covered include: Elasticity - Plasticity theory - Creep theory - The nonlinear finite element method - Solution of nonlinear equilibrium equations - Integration of elastoplastic constitutive equations - The thermodynamic framework for constitutive modelling - Thermoplasticity - Uniqueness and discontinuous bifurcations More comprehensive in scope than competitive titles, with detailed discussion of thermodynamics and numerical methods. Offers appropriate strategies for numerical solution, illustrated by discussion of specific models. Demonstrates each topic in a complete and self-contained framework, with extensive referencing.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: