Cover image for Spectroscopy, Dynamics and Molecular Theory of Carbon Plasmas and Vapors : ADVANCES IN THE UNDERSTANDING OF THE MOST COMPLEX HIGH-TEMPERATURE ELEMENTAL SYSTEM.
Spectroscopy, Dynamics and Molecular Theory of Carbon Plasmas and Vapors : ADVANCES IN THE UNDERSTANDING OF THE MOST COMPLEX HIGH-TEMPERATURE ELEMENTAL SYSTEM.
Title:
Spectroscopy, Dynamics and Molecular Theory of Carbon Plasmas and Vapors : ADVANCES IN THE UNDERSTANDING OF THE MOST COMPLEX HIGH-TEMPERATURE ELEMENTAL SYSTEM.
Author:
Nemes, Laszlo.
ISBN:
9789812837653
Personal Author:
Physical Description:
1 online resource (536 pages)
Contents:
Contents -- Foreword -- Preface -- Experimental -- Chapter 1 Spectroscopy of Carbon Nanotube Production Processes -- 1. Introduction -- 2. Arc Discharge -- 3. Laser Plumes -- 4. Glow Discharge -- 5. Flames -- 6. Conclusions -- References -- Chapter 2 Spectroscopic Studies on Laser-Produced Carbon Vapor -- 1. Introduction -- 2. Experimental Apparatus -- 2.1. Laser ablation system -- 2.2. Optical emission spectroscopy -- 2.3. Laser-induced fluorescence imaging spectroscopy -- 3. Optical Emission from Laser-Produced Carbon Vapor [Sasaki et al. (2002)] -- 3.1. Temporal variation of optical emission intensity -- 3.2. Optical emission spectrum -- 3.3. Spatial distribution of delayed continuum emission -- 4. Spatiotemporal Variations of C2 and C3 Radical Densities [Sasaki et al. (2002)] -- 4.1. C2 and C3 radical densities in vacuum -- 4.2. C2 and C3 radical densities in ambient He gas at 1 Torr -- 4.3. C2 and C3 radical densities in ambient He gas at 5 Torr -- 5. Temporal Change in the Total Numbers of C2 and C3 -- 6. Spatiotemporal Variation of Plume Temperature [Sasaki and Aoki (2008)] -- 6.1. Evaluation of plume temperature -- 6.2. Spatial distribution of plume temperature -- 6.3. Temporal variation of plume temperature -- 7. A Scenario for the Growth of Carbon Clusters -- 8. Conclusions -- References -- Chapter 3 Kinetic and Diagnostic Studies of Carbon Containing Plasmas and Vapors Using Laser Absorption Techniques -- 1. Introduction -- 2. Plasma Chemistry and Reaction Kinetics -- 2.1. General considerations -- 2.2. Molecular microwave plasmas containing hydrocarbons -- 3. Gas-Phase Characterization in Diamond Hot-Filament CVD -- 4. Kinetic Studies and Molecular Spectroscopy of Radicals -- 4.1. Line strengths and transition dipole moment of CH3 -- 4.2. Molecular spectroscopy of the CN radical.

5. Quantum Cascade Laser Absorption Spectroscopy for Plasmas Diagnostics and Control -- 5.1. General considerations -- 5.2. Trace gas measurements using optically resonant cavities -- 5.3. In situ monitoring of plasma etch processes with a QCL arrangement in semiconductor industrial environment -- 6. Summary and Conclusions -- Acknowledgements -- References -- Chapter 4 Spectroscopy of Carbon Containing Diatomic Molecules -- 1. Introduction -- 1.1. Differences between atomic and diatomic spectra -- 1.2. The line strength -- 2. Diatomic Quantum Theory -- 2.1. Diatomic eigenfunctions -- 2.2. Diatomic parity -- 2.3. Homonuclear diatomics -- 2.4. Born-Oppenheimer approximation -- 2.5. Hund's angular momentum coupling cases -- 3. The Diatomic Hamiltonian -- 3.1. The rotational Hamiltonian -- 3.2. The fine structure Hamiltonian -- 3.3. Hamiltonian matrix elements in Hund's case (a) -- 3.4. Centrifugal corrections to molecular parameters -- 4. Finding the Molecular Parameters by Fitting a Measured Spectrum -- 4.1. Example of a spectrum fit -- 5. Diatomic Line Strengths in the Case (a) Basis -- 5.1. RKR potentials and vibrational eigenfunctions -- 5.2. Computation of the diatomic line strength -- 6. Example Applications of Line Strengths -- 6.1. Free spontaneous emission -- 6.2. Using a measured spectrum to infer temperature -- References -- Chapter 5 Optical Emission Spectroscopy of C2 and C3 Molecules in Laser Ablation Carbon Plasma -- 1. Introduction -- 2. Main Sources of C2 and C3 Molecules in Laser Ablation Plume -- 3. OES of C2 and C3 Molecules in Single Pulse Laser Ablation Plasma -- 3.1. Dependence of plume characteristics on ablation parameters -- 3.2. Temporal and spatial profiles of C2 and C3 molecules in laser produced plasma -- 3.3. Temperature determination -- 4. OES of C2 and C3 Molecules in Double Pulse Laser Ablation Plasma.

4.1. Double pulse ablation plasma -- 4.2. Time resolved emission from C2 and C3 molecules in double pulse ablated plasma -- 4.3. Influence of pulse separation on emission intensity enhancement -- 4.4. Influence of laser-laser delay time on the temporal profiles of excited C2 and C3 species in dual-pulse plasma -- 5. Summary Remarks -- References -- Chapter 6 Intra-Cavity Laser Spectroscopy of Carbon Clusters -- 1. Introduction -- 2. Cluster Formation in Laser Ablation Plume -- 3. Electronic Spectroscopy of Carbon Clusters -- 4. Intra-cavity Laser Spectroscopy -- 5. Experimental Results -- 6. Intra-cavity Absorption Spectra of Carbon Clusters -- 7. Conclusions -- Acknowledgement -- References -- Chapter 7 Dynamics of Laser-Ablated Carbon Plasma for Thin Film Deposition: Spectroscopic and Imaging Approach -- 1. Introduction -- 2. Experimental Details -- 3. Laser-Ablated Plasma in Presence of an Ambient Gas -- 3.1. Optical emission spectroscopy -- 3.2. Fast photography -- 3.3. Lased-induced fluorescence -- 4. Conclusions -- Acknowledgement -- References -- Chapter 8 Laser Spectroscopy of Transient Carbon Species in the Context of Soot Formation -- 1. Introduction -- 2. Soot Formation Chemistry -- 2.1. Radical mechanism of soot formation -- 2.2. Ionic mechanism of soot formation -- 2.3. Some interesting transient carbon species -- 3. General Experimental Approaches and Instrumentation -- 3.1. Experimental set-up -- 3.2. Production of transient carbon species -- 4. Methods of Laser Spectroscopy -- 4.1. Laser absorption spectroscopy -- 4.2. Laser-magnetic resonance (LMR) -- 4.3. Laser-induced fluorescence (LIF) -- 4.4. Nonlinear laser spectroscopy -- 4.5. Multi-photon ionization spectroscopy -- 5. Overview and Perspectives -- Acknowledgments -- References.

Chapter 9 Developing New Production and Observation Methods for Various Sized Carbon Nanomaterials from Clusters to Nanotubes -- 1. Introduction -- 2. Experimental -- 2.1. Pulsed Arc Discharge of and Property Measurements on DWNTs -- 2.2. Ion Mobility and Mass Spectrometry -- 2.3. High-pressure Laser Vaporization -- 3. Results and Discussion -- 3.1. Production and Characterization of DWNTs by High-temperature Pulsed Arc Discharge -- 3.2. Purification of DWNTs, and their properties -- 3.3. DWNT AFM tips -- 3.4. DWNT Field Effect Transistor -- 3.5. Ion Mobility and Mass Spectrometry -- 3.6. Production of Large Carbon Clusters -- 4. Summary -- Acknowledgments -- References -- Theoretical -- Chapter 10 Potential Model for Molecular Dynamics of Carbon -- 1. History of Potential Model for Carbon -- 2. The Modified Brenner REBO Potential -- 3. Interlayer Intermolecular Potential -- 4. Application to Plasma-Wall Interaction -- 5. Concluding Remarks -- References -- Chapter 11 Electronic and Molecular Structures of Small- and Medium-Sized Carbon Clusters -- 1. Introduction -- 2. Small and Medium-Sized Carbon Clusters -- 2.1. Linear Cn -- 2.2. Cyclic Cn -- 3. Even C2n -- 3.1. C4 -- 3.2. C6 -- 3.3. C8 -- 3.4. C10 -- 3.5. C2n, n = 6 - 9 (C12, C14, C16, and C18) -- 4. Odd C2n+1 -- 4.1. C5 -- 4.2. C7 -- 4.3. C9 -- 4.4. C2n+1, n = 5 - 7 (C11, C13, and C15) -- 5. Conclusion -- Acknowledgements -- References -- Chapter 12 Vibrational Spectroscopy of Linear Carbon Chains -- 1. Introduction -- 2. Computational Details -- 3. Infinite Chains -- 3.1. Geometric Structure -- 3.2. Electronic Structure -- 3.3. Phonon Structure -- 4. Finite Approach - Will Finite Become Infinite? -- 4.1. Geometric Structure of Finite Chains -- 4.2. Electronic Structure of Finite Chains -- 4.3. Vibrational Structure of Finite Chains -- 5. Vibrational Spectra -- 6. Conclusions -- References.

Chapter 13 Dynamics Simulations of Fullerene and SWCNT Formation -- 1. Introduction -- 2. The Present Status of SWNT Formation Processes -- 2.1. Experimental techniques for SWNT synthesis -- 2.2. Hypothetical models of SWNT formation mechanisms -- 2.3. Molecular force field modeling of TM-catalyzed SWNT formation -- 3. QM/MD Simulations of Fullerene Formation and SWNT Growth Processes -- 3.1. Computational methodology for high-temperature QM/MD simulations -- 3.2. High-temperature QM/MD simulations of carbon: Polyyne chains are everywhere -- 3.3. The self-assembly mechanism of fullerenes in QM/MD simulations -- 3.4. Importance of quantum chemical potential in carbon nanochemistry -- 3.5. Importance of carbon flux for self-assembly processes -- 3.6. Fe/C interactions during SWNT growth in carbon vapor -- 4. Summary -- Acknowledgements -- References -- Chapter 14 Mechanisms of Carbon Gasification Reactions Using Electronic Structure Methods -- 1. Introduction -- 2. Molecular Systems and Model Chemistries -- 3. Oxidation Reactions -- 4. CO2 Interaction with Carbon Surfaces -- 5. Hydrogenation Reactions -- 6. CO Interaction with Carbon Surfaces -- 7. Catalyzed Reactions -- 8. Carbon-NOx reactions -- 9. Concluding Remarks -- Acknowledgments -- References -- Appendix (Calculations output) -- Index.
Abstract:
This book is a stop-gap contribution to the science and technology of carbon plasmas and carbon vapors. It strives to cover two strongly related fields: the molecular quantum theory of carbon plasmas and carbon nanostructures; and the molecular and atomic spectroscopy of such plasmas and vapors. These two fields of research are strongly intertwined and thus reinforce one another. Even though the use of carbon nanostructures is increasing by the day and their practical uses are emerging, there is no modern review on carbon plasmas, especially from molecular theoretical and spectroscopic viewpoints. The importance of the present book is therefore great from both educational and practical aspects. This review might be the first step towards bringing such textbooks into existence for university education. Similarly, for applied and engineering works in carbon nanostructures, the book provides a theoretical salient point for technologists in the field.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: